Application of seismic full waveform inversion to monitor CO2 injection: Modelling and a real data example from the Ketzin site, Germany
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Seismic monitoring of an injected carbon dioxide (CO2) distribution at depth is an important issue in the geological storage of CO2. To help monitor changes in the subsurface during CO2 injection a series of 2D seismic surveys were acquired within the framework of the CO2SINK and CO2MAN projects at Ketzin, Germany at different stages of the injection process. Here we investigate using seismic full waveform inversion as a qualitative tool for time-lapse seismic monitoring given the constraints of the limited maximum offsets of the 2D seismic data. Prior to applying the inversion to the real data we first made a number of benchmark tests on synthetic data using a similar geometry as in the real data. Results from the synthetic benchmark tests show that it is difficult to recover the true value of the velocity anomaly due to the injection but that it is possible to qualitatively locate the distribution of the injected CO2. After the synthetic studies, we applied seismic full waveform inversion on the real time-lapse data from the Ketzin site along with conventional time-lapse processing. Both methods show a similar qualitative distribution of the injected CO2 and agree well with expectations based upon more extensive 3D time-lapse monitoring in the area.
Related items
Showing items related by title, author, creator and subject.
-
Wisman, Putri Sari (2012)The CO2CRC Otway Project aims to demonstrate that CO2 can be safely stored in a depleted gas field and that an appropriate monitoring strategy can be deployed to verify its containment. The project commenced in 2005, with ...
-
Grochau, Marcos Hexsel (2009)Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
-
Al Jabri, Yousuf (2011)Time-lapse seismic is a powerful methodology for remotely monitoring changes in oil and gas reservoirs. Its high sensitivity and resolving power make it the methodology of choice for monitoring CO2 sequestration in deep ...