Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effects of Waves on Tabular Ice-Shelf Calving

    Access Status
    Fulltext not available
    Authors
    Ren, Diandong
    Leslie, Lance
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ren, D. and Leslie, L. 2014. Effects of Waves on Tabular Ice-Shelf Calving. Earth Interactions. 18 (13): pp. 1-28.
    Source Title
    Earth Interactions
    DOI
    10.1175/EI-D-14-0005.1
    ISSN
    1087-3562
    School
    Department of Imaging and Applied Physics
    URI
    http://hdl.handle.net/20.500.11937/33318
    Collection
    • Curtin Research Publications
    Abstract

    As a conveyor belt transferring inland ice to ocean, ice shelves shed mass through large, systematic tabular calving, which also plays a major role in the fluctuation of the buttressing forces. Tabular iceberg calving involves two stages: first is systematic cracking, which develops after the forward-slanting front reaches a limiting extension length determined by gravity–buoyancy imbalance; second is fatigue separation. The latter has greater variability, producing calving irregularity. Whereas ice flow vertical shear determines the timing of the systematic cracking, wave actions are decisive for ensuing viscoplastic fatigue. Because the frontal section has its own resonance frequency, it reverberates only to waves of similar frequency. With a flow-dependent, nonlocal attrition scheme, the present ice model [Scalable Extensible Geoflow Model for Environmental Research-Ice flow submodel (SEGMENT-Ice)] describes an entire ice-shelf life cycle.It is found that most East Antarctic ice shelves have higher resonance frequencies, and the fatigue of viscoplastic ice is significantly enhanced by shoaling waves from both storm surges and infragravity waves (~5 × 10−3 Hz). The two largest embayed ice shelves have resonance frequencies within the range of tsunami waves. When approaching critical extension lengths, perturbations from about four consecutive tsunami events can cause complete separation of tabular icebergs from shelves. For shelves with resonance frequencies matching storm surge waves, future reduction of sea ice may impose much larger deflections from shoaling, storm-generated ocean waves. Although the Ross Ice Shelf (RIS) total mass varies little in the twenty-first century, the mass turnover quickens and the ice conveyor belt is ~40% more efficient by the late twenty-first century, reaching 70 km3 yr−1. The mass distribution shifts oceanward, favoring future tabular calving.

    Related items

    Showing items related by title, author, creator and subject.

    • Antarctic ice sheet mass loss estimates using Modified Antarctic Mapping Mission surface flow observations
      Ren, Diandong; Leslie, L.; Lynch, Mervyn (2012)
      The long residence time of ice and the relatively gentle slopes of the Antarctica Ice Sheet make basal sliding a unique positive feedback mechanism in enhancing ice discharge along preferred routes. The highly organized ...
    • Verification of model simulated mass balance, flow fields and tabular calving events of the Antarctic ice sheet against remotely sensed observations
      Ren, Diandong; Leslie, L.; Lynch, Mervyn (2013)
      The Antarctic ice sheet (AIS) has the greatestpotential for global sea level rise. This study simulates AISice creeping, sliding, tabular calving, and estimates the totalmass balances, using a recently developed, advanced ...
    • Acoustic observation of ice rifting and breaking events on the Antarctic ice shelf using remote hydroacoustic listening stations
      Li, Binghui (2010)
      Long-term continuous monitoring of ice break-up on ice shelves and icebergs in Antarctica is essential for a global observation system of climate change and its consequences. While calving of massive pieces of ice from ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.