Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Access Status
    Fulltext not available
    Authors
    Peng, Y.
    Fan, H.
    Ge, J.
    Wang, Shaobin
    Chen, P.
    Jiang, Q.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Peng, Y. and Fan, H. and Ge, J. and Wang, S. and Chen, P. and Jiang, Q. 2012. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Applied Surface Science. 263: pp. 737-744.
    Source Title
    Applied Surface Science
    DOI
    10.1016/j.apsusc.2012.09.152
    ISSN
    01694332
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/3341
    Collection
    • Curtin Research Publications
    Abstract

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

    Related items

    Showing items related by title, author, creator and subject.

    • Preparation and characterization of hydrophobic PVDF membranes by vapor-induced phase separation and application in vacuum membrane distillation
      Fan, H.; Peng, Y.; Li, Z.; Chen, P.; Jiang, Q.; Wang, Shaobin (2013)
      Hydrophobic symmetric flat-sheet membranes of polyvinylidene fluoride (PVDF) for use in vacuum membrane distillation (VMD) were successfully fabricated by the vapour induced phase separation (VIPS) method using the double ...
    • Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation
      Lu, X.; Peng, Y.; Ge, L.; Lin, R.; Zhu, Z.; Liu, Shaomin (2016)
      © 2015 Elsevier B.V. This study aimed to develop an effective method to fabricate the amphiphobic polyvinylidene fluoride (PVDF) composite membranes for membrane distillation (MD) with excellent tolerance to various organic ...
    • The development of a rigorous nanocharacterization scheme for electrochemical systems
      Veder, Jean-Pierre M. (2010)
      This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.