Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper reports a newly developed solvothermal strategy for the synthesis of ZnO-decorated α-Fe2O3 nanorods based on the reaction of α-Fe2O3 nanorods with zinc sulfate and urea in autoclaves at 180 °C. The resulting nanocomposites consist of porous α-Fe2O3 nanorods with diameters of 100–200 nm and a surface decorated with small ZnO nanoparticles (10–20 nm). The ZnO NPs are found to grow epitaxially on {110} planes of α-Fe2O3, forming an interfacial orientation relationship of (100)ZnO/(110)α-Fe2O3. The addition of ZnO is found to shift the Fe 2p peak position in the α-Fe2O3/ZnO nanocomposites to higher binding energies due to the formation of the α-Fe2O3/ZnO heterojunction interface. The gas-sensing results show that the ZnO-decorated α-Fe2O3 nanorods exhibit excellent sensitivity, selectivity, and stability toward n-butanol gas at a low optimum temperature of 225 °C. In particular, they show higher sensitivity compared to pure α-Fe2O3 (4 times higher) and ZnO nanorods (2.5 times higher), respectively, along with faster response times. The significant enhancement in sensitivity may be attributed to the chemical and electronic sensitization induced by the ZnO nanoparticles deposited on the surfaces of the α-Fe2O3 nanorods. The findings reported in this study will be useful for the design and construction of surface modified-metal oxide nanostructures with enhanced gas-sensing performance.
Related items
Showing items related by title, author, creator and subject.
-
Yusuf V. Kaneti; Zhengjie Zhang; Jeffrey Yue; Quadir, Md Zakaria; Chuyang Chen; Xuchuan Jiang; Aibing Yu (2014)The sensitivity of a metal oxide gas sensor is strongly dependent on the nature of the crystal surface exposed to the gas species. In this study, two types of zinc oxide (ZnO) nanostructures: nanoplates and nanorods with ...
-
Yan, Q.; Li, Xin Yong; Zhao, Q.; Qu, Z. (2011)Co3O4 nanorods were fabricated by the low-temperature hydrothermal method. The Co3O4 nanorods were formed through adding a small amount of surfactants (Polyvinylpyrrolidone, referred to as PVP) and reacting at 95°C. ...
-
Yusuf Valentino Kaneti; Julien Moriceau; Minsu Liu; Yuan Yuan; Quadir, Md Zakaria; Xuchuan Jiang; Aibing Yu (2014)This study reports facile hydrothermal strategies for the synthesis of novel ternary α-Fe2O3–ZnO–Au nanocomposites under mild conditions, through further surface coating of ZnO and Au nanoparticles (NPs) on α-Fe2O3 nanorods. ...