Show simple item record

dc.contributor.authorVo, Ba Tuong
dc.contributor.authorClark, D.
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorRistic, B.
dc.date.accessioned2017-01-30T13:38:32Z
dc.date.available2017-01-30T13:38:32Z
dc.date.created2014-07-01T20:00:28Z
dc.date.issued2011
dc.identifier.citationVo, B.T. and Clark, D. and Vo, B. and Ristic, B. 2011. Bernoulli Forward-Backward Smoothing for Joint Target Detection and Tracking. IEEE Transactions on Signal Processing. 59 (9): pp. 4473-4477.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/33662
dc.identifier.doi10.1109/TSP.2011.2158427
dc.description.abstract

In this correspondence, we derive a forward-backward smoother for joint target detection and estimation and propose a sequential Monte Carlo implementation. We model the target by a Bernoulli random finite set since the target can be in one of two “present” or “absent” modes. Finite set statistics is used to derive the smoothing recursion. Our results indicate that smoothing has two distinct advantages over just using filtering: First, we are able to more accurately identify the appearance and disappearance of a target in the scene, and second, we can provide improved state estimates when the target exists.

dc.publisherInstitute of Electrical and Electronics Engineers
dc.subjecttracking
dc.subjectfiltering
dc.subjectestimation
dc.subjectDetection
dc.subjectsmoothing
dc.titleBernoulli Forward-Backward Smoothing for Joint Target Detection and Tracking
dc.typeJournal Article
dcterms.source.volume59
dcterms.source.number9
dcterms.source.startPage4473
dcterms.source.endPage4477
dcterms.source.issn1053-587X
dcterms.source.titleIEEE Transactions on Signal Processing
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record