TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical.
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction “a” parameter that leads to the Frumkin isotherm.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, L.; Laborda, E.; Darwish, Nadim; Noble, B.; Tyrell, J.; Pluczyk, S.; Le Brun, A.; Wallace, G.; Gonzalez, J.; Coote, M.; Ciampi, Simone (2018)© 2017 American Chemical Society. Alkoxyamines are heat-labile molecules, widely used as an in situ source of nitroxides in polymer and materials sciences. Here we show that the one-electron oxidation of an alkoxyamine ...
-
Kashi, M.; Silva, S.; Yang, Y.; Gonçales, V.; Parker, S.; Barfidokht, A.; Ciampi, Simone; Gooding, J. (2017)© 2017 Elsevier Ltd Semiconducting electrodes that are in depletion, can support appreciable electron transfer only when illuminated. This phenomenon has been implemented on silicon electrodes passivated by a protective ...
-
Eggers, P.; Da Silva, P.; Darwish, Nadim; Zhang, Y.; Tong, Y.; Ye, S.; Paddon-Row, M.; Gooding, J. (2010)A new class of electroactive norbornylogous bridges, with no net curvature, that form self-assembled monolayers on gold electrodes were studied by electrochemistry and in situ infrared spectroscopy. The influence of the ...