Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Development and Initial Biogeochemical Applications of Compound-Specific Sulfur Isotope Analysis

    Access Status
    Fulltext not available
    Authors
    Greenwood, Paul
    Amrani, A.
    Sessions, A.
    Raven, M.
    Holman, Alex
    Dror, G.
    Grice, Kliti
    Mcculloch, M.
    Adkins, J.
    Date
    2014
    Type
    Book Chapter
    
    Metadata
    Show full item record
    Citation
    Greenwood, P. and Amrani, A. and Sessions, A. and Raven, M. and Holman, A. and Dror, G. and Grice, K. et al. 2015. Development and Initial Biogeochemical Applications of Compound-Specific Sulfur Isotope Analysis, in Grice, K. (ed), Principles and practice of analytical techniques in geosciences, pp. 285-312. UK: The Royal Society of Chemistry.
    Source Title
    Principles and practice of analytical techniques in geosciences
    DOI
    10.1039/9781782625025-00285
    ISBN
    9781849736497
    School
    Department of Applied Chemistry
    URI
    http://hdl.handle.net/20.500.11937/34076
    Collection
    • Curtin Research Publications
    Abstract

    Compound-specific isotope analysis (CSIA) has been extended to the 32S and 34S stable isotopes of sulfur (δ34S) through the combination of gas chromatography (GC) and multi-collector inductively coupled mass spectrometry (ICPMS). The molecular level resolution of sulfur-CSIA is greatly expanding the biogeochemical applications of existing sulfur isotope methods, particularly with respect to organic sulfur compounds. Sulfur participates in a variety of important biogeochemical and redox processes, with distinctive isotopic fractionations accompanying many of these. For example, hydrogen sulfide produced during microbial sulfate reduction can be strongly depleted in 34S (up to 66‰ in δ34S) compared to the source sulfate. An improved understanding of sulfur biogeochemistry at the molecular level will assist in the interpretation of studies of sulfur cycling associated with the modern and paleo-environments. A comparison of δ34S values between organic and inorganic sulfur species may help to illuminate the complex role of sulfur in sedimentary organic diagenesis and the pathways of organic sulfur formation. The δ34S values of individual organic sulfur compounds from natural settings can be currently measured by GC-ICPMS with impressive accuracy, precision (<0.5‰) and sensitivity (≥20 pmol S) over a broad range of analyte volatility. The new sulfur-CSIA capability has already been used to study pathways of early diagenetic organic sulfurisation, volatile sulfur emission from the oceans, oil correlations, thermochemical sulfate reduction of petroleum hydrocarbons, and the relationship between OSCs and mineralising sulfides of large metal deposits.

    Related items

    Showing items related by title, author, creator and subject.

    • Evaluating the source, age, thermal history and palaeoenvironments of deposition of Australian and Western Canadian petroleum systems: compound specific stable isotopes coupled with inorganic trace elements
      Maslen, Ercin (2010)
      Petroleum geochemistry is an important scientific discipline used in the exploration and production of hydrocarbons. Petroleum geochemistry involves the applications of organic geochemistry to the study of origin, formation, ...
    • Malodorous dimethylpolysulfides in Perth drinking water.
      Heitz, Anna (2002)
      The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; ...
    • Biomarker distributions and stable isotopes (C, S, H) to establish palaeoenvironmental change related to the end-Permian mass extinction event
      Nabbefeld, Birgit (2009)
      Extinction, the irreversible loss of species, is perhaps the most alarming symptom of the ongoing biodiversity crisis. Some of the most significant changes in evolution throughout Earth’s history have coincided with ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.