Show simple item record

dc.contributor.authorWang, G.
dc.contributor.authorYu, C.
dc.contributor.authorTeo, Kok Lay
dc.date.accessioned2017-01-30T13:41:23Z
dc.date.available2017-01-30T13:41:23Z
dc.date.created2013-11-11T20:00:32Z
dc.date.issued2013
dc.identifier.citationWang, G.Q. and Yu, C.J. and Teo, K.L. 2013. A new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization. Applied Mathematics and Computations. 221: pp. 329-343.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/34134
dc.identifier.doi10.1016/j.amc.2013.06.064
dc.description.abstract

In this paper, we generalize the classical primal–dual logarithmic barrier method for linear optimization to convex quadratic optimization over symmetric cone by using Euclidean Jordan algebras. The symmetrization of the search directions used in this paper is based on the Nesterov–Todd scaling scheme, and only full Nesterov–Todd step is used at each iteration. We derive the iteration bound that matches the currently best known iteration bound for small-update methods, namely, O(√rlog4/ε. Some preliminary numerical results are provided to demonstrate the computational performance of the proposed algorithm.

dc.publisherElsevier Inc.
dc.subjectpolynomial complexity
dc.subjectconvex quadratic optimization
dc.subjectinterior-point methods
dc.subjectEuclidean Jordan algebras
dc.subjectsmall-update method
dc.titleA new full Nesterov-Todd step feasible interior-point method for convex quadratic symmetric cone optimization
dc.typeJournal Article
dcterms.source.volume221
dcterms.source.startPage329
dcterms.source.endPage343
dcterms.source.issn0096-3003
dcterms.source.titleApplied Mathematics and Computations
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record