Twitter Sentiment Mining: A Multi Domain Analysis
dc.contributor.author | Shahheidari, S. | |
dc.contributor.author | Dong, Hai | |
dc.contributor.author | Bin Daud, M.N.R. | |
dc.contributor.editor | Leonard Barolli | |
dc.contributor.editor | Fatos Xhafa | |
dc.contributor.editor | Hsing-Chung Chen | |
dc.contributor.editor | Antonio F. Skarmeta Gómez | |
dc.contributor.editor | Farookh Hussain | |
dc.date.accessioned | 2017-01-30T13:42:31Z | |
dc.date.available | 2017-01-30T13:42:31Z | |
dc.date.created | 2013-09-30T20:00:36Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Shahheidari, Saeideh and Dong, Hai and Bin Daud, M.N.R. 2013. Twitter Sentiment Mining: A Multi Domain Analysis, in Barolli, L. and Xhafa, F. and Chen, H.C. and Gómez-Skarmeta, A.F. and Hussain, F. (ed), Seventh International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Jul 3-5 2013, pp. 144-149. Asia University, Taichung, Taiwan: IEEE. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/34303 | |
dc.identifier.doi | 10.1109/CISIS.2013.31 | |
dc.description.abstract |
Microblogging such as Twitter provides a rich source of information about products, personalities, and trends, etc. We proposed a simple methodology for analyzing sentiment of users in Twitter. First, we automatically collected Twitter corpus in positive and negative tweets. Second, we built a simple sentiment classifier by utilizing the Naive Bayes model to determine the positive and negative sentiment of a tweet. Third, we tested the classifier against a collection of users’ opinions from five interesting domains of Twitter, i.e., news, finance, job, movies, and sport. The experimental results show that it is feasible to use Twitter corpus alone to classify new tweet for a certain domain applications. | |
dc.publisher | CPS | |
dc.subject | social media | |
dc.subject | text mining | |
dc.subject | classifier | |
dc.subject | Opinion mining | |
dc.subject | sentiment analysis | |
dc.title | Twitter Sentiment Mining: A Multi Domain Analysis | |
dc.type | Conference Paper | |
dcterms.source.startPage | 144 | |
dcterms.source.endPage | 149 | |
dcterms.source.title | 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems | |
dcterms.source.series | 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems | |
dcterms.source.isbn | 978-0-7695-4992-7 | |
dcterms.source.conference | CISIS 2013 | |
dcterms.source.conference-start-date | Jul 3 2013 | |
dcterms.source.conferencelocation | Asia University, Taichung, Taiwan | |
dcterms.source.place | Japan | |
curtin.note |
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | |
curtin.department | ||
curtin.accessStatus | Open access |