The incorporation of Cadium, Manganese and Ferrous Iron in Sphalerite: Insights from Computer Simulations
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
School
Collection
Abstract
Techniques of atomistic simulation have been used to study the incorporation of the M2+ impurities iron, manganese and cadmium into sphalerite. The calculations show that bulk impurity ions are most easily incorporated by direct substitution at the Zn site, and that the substitution energies exhibit a linear relationship with ionic radii. Furthermore, there appears to be no driving force for the creation of clusters, or any barrier to their formation. However, the formation of iron pairs leads to deviations from Vegard's Law. Simulations of pure ZnS surfaces have identified a new reconstruction for the zinc-terminated (111), which has the lowest energy of all {111}-type surfaces. Furthermore, impurities can exchange with zinc more easily on (111) than on any of the other surfaces studied. The results of the simulations show that crystal morphology and surface structure will exert an influence on uptake of impurities, with the effect being most noticeable for cadmium and least important for iro
Related items
Showing items related by title, author, creator and subject.
-
Wang, Kai (2012)Atmospheric leaching (AL) of low-grade nickel laterite ores can produce a pregnant leach solution (PLS) containing significant amounts of impurities such as trivalent iron, aluminium and chromium ions. Purification of PLS ...
-
Gao, Changhong (2008)Produced water presents economical and environmental challenges to oil producers. Downhole separation technology is able to separate oil or gas from produced fluid in downhole environment and injects waste water into ...
-
Hudson-Edwards, K.; Wright, Kathleen (2011)Jarosite is an important mineral on Earth, and possibly on Mars, where it controls the mobility of iron, sulfate and potentially toxic metals. Atomistic simulations have been used to study the incorporation of Al3+, and ...