Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Validation of genome-wide association studies as a tool to identify virulence factors in parastagonospora nodorum

    Access Status
    Fulltext not available
    Authors
    Gao, Y.
    Liu, Z.
    Faris, J.
    Richards, J.
    Brueggeman, R.
    Li, X.
    Oliver, Richard
    McDonald, B.
    Friesen, T.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gao, Y. and Liu, Z. and Faris, J. and Richards, J. and Brueggeman, R. and Li, X. and Oliver, R. et al. 2016. Validation of genome-wide association studies as a tool to identify virulence factors in parastagonospora nodorum. Phytopathology. 106 (10): pp. 1177-1185.
    Source Title
    Phytopathology
    DOI
    10.1094/PHYTO-02-16-0113-FI
    ISSN
    0031-949X
    School
    Centre for Crop Disease Management
    URI
    http://hdl.handle.net/20.500.11937/34543
    Collection
    • Curtin Research Publications
    Abstract

    Parastagonospora nodorum is a necrotrophic fungal pathogen causing Septoria nodorum blotch on wheat. We have identified nine necrotrophic effector–host dominant sensitivity gene interactions, and we have cloned three of the necrotrophic effector genes, including SnToxA, SnTox1, and SnTox3. Because sexual populations of P. nodorum are difficult to develop under lab conditions, genome-wide association study (GWAS) is the best population genomic approach to identify genomic regions associated with traits using natural populations. In this article, we used a global collection of 191 P. nodorum isolates from which we identified 2,983 single-nucleotide polymorphism (SNP) markers and gene markers for SnToxA and SnTox3 to evaluate the power of GWAS on two popular wheat breeding lines that were sensitive to SnToxA and SnTox3. Strong marker trait associations (MTA) with P. nodorum virulence that mapped to SnTox3 and SnToxA were first identified using the marker set described above. A novel locus in the P. nodorum genome associated with virulence was also identified as a result of this analysis. To evaluate whether a sufficient level of marker saturation was available, we designed a set of primers every 1 kb in the genomic regions containing SnToxA and SnTox3. Polymerase chain reaction amplification was performed across the 191 isolates and the presence/absence polymorphism was scored and used as the genotype. The marker proximity necessary to identify MTA flanking SnToxA and SnTox3 ranged from 4 to 5 and 1 to 7 kb, respectively.Similar analysis was performed on the novel locus. Using a 45% missing data threshold, two more SNP were identified spanning a 4.6-kb genomic region at the novel locus. These results showed that the rate of linkage disequilibrium (LD) decay in P. nodorum and, likely, other fungi is high compared with plants and animals. The fast LD decay in P. nodorum is an advantage only if sufficient marker density is attained. Based on our results with the SnToxA and SnTox3 regions, markers are needed every 9 or 8 kb, respectively, or in every gene, to guarantee that genes associated with a quantitative trait such as virulence are not missed.

    Related items

    Showing items related by title, author, creator and subject.

    • Assessing European wheat sensitivities to parastagonospora nodorum necrotrophic effectors and fine-mapping the Snn3-B1 locus conferring sensitivity to the effector SnTox3
      Downie, R.; Bouvet, L.; Furuki, Eiko; Gosman, N.; Gardner, K.; Mackay, I.; Mantello, C.; Mellers, G.; Phan, Huyen Phan; Rose, G.; Tan, Kar-Chun; Oliver, Richard; Cockram, J. (2018)
      © 2018 Downie, Bouvet, Furuki, Gosman, Gardner, Mackay, Campos Mantello, Mellers, Phan, Rose, Tan, Oliver and Cockram. Parastagonospora nodorum is a necrotrophic fungal pathogen of wheat (Triticum aestivum L.), one of the ...
    • Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies
      Phan, H.; Rybak, K.; Bertazzoni, S.; Furuki, E.; Dinglasan, E.; Hickey, L.; Oliver, R.; Tan, Kar-Chun (2018)
      The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch (SNB) of wheat. The pathosystem is mediated by multiple fungal necrotrophic effector–host sensitivity gene interactions that include ...
    • GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch
      Phan, Huyen; Furuki, Eiko; Hunziker, Lukas ; Clarke, Kasia; Tan, Kar-Chun (2021)
      The fungus Parastagonospora nodorum is the causal agent of septoria nodorum leaf blotch (SNB) and glume blotch which are common in many wheat growing regions in the world. The disease is complex and could be explained by ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.