Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic β-Cell Line and Enhances Glycemic Function in ob/ob Mice

    Access Status
    Open access via publisher
    Authors
    Gaudel, Celine
    Nongonierma, Alice
    Maher, Samuel
    Flynn, Sarah
    Krause, Mauricio
    Murray, Brian
    Kelly, Phillip
    Baird, Alan
    FitzGerald, Richard
    Newsholme, Philip
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gaudel, Celine and Nongonierma, Alice and Maher, Samuel and Flynn, Sarah and Krause, Mauricio and Murray, Brian and Kelly, Phillip and Baird, Alan and FitzGerald, Richard and Newsholme, Philip. 2013. A Whey Protein Hydrolysate Promotes Insulinotropic Activity in a Clonal Pancreatic β-Cell Line and Enhances Glycemic Function in ob/ob Mice. Journal of Nutrition. 143: pp. 1109-1114.
    Source Title
    Journal of Nutrition
    DOI
    10.3945/jn.113.174912
    ISSN
    00223166
    URI
    http://hdl.handle.net/20.500.11937/34580
    Collection
    • Curtin Research Publications
    Abstract

    Whey protein hydrolysates (WPHs) represent novel antidiabetic agents that affect glycemia in animals and humans, but little is known about their insulinotropic effects. The effects of a WPH were analyzed in vitro on acute glucose-induced insulin secretion in pancreatic BRIN-BD11 β cells. WPH permeability across Caco-2 cell monolayers was determined in a 2-tiered intestinal model. WPH effects on insulin resistance were studied in vivo following an 8-wk oral ingestion (100mg/kg body weight) by ob/ob (OB-WPH) and wild-type mice (WT-WPH) compared with vehicle control (OB and WT groups) usinga 2 3 2 factorial design, genotype 3 treatment. BRIN-BD11 cells showed a robust and reproducible dose-dependent insulinotropic effect of WPH (from 0.01 to 5.00 g/L). WPH bioactive constituents were permeable across Caco-2 cell monolayers. In the OB-WPH and WT-WPH groups, WPH administration improved glucose clearance after a glucose challenge (2 g/kg body weight), as indicated by differences in the area under curves (AUCs) (P ≤ 0.05). The basal plasma glucose concentration was not affected by WPH treatment in either genotype. The plasma insulin concentration was lower in the OB-WPH than in the OB group (P ≤ 0.005) but was similar between the WT and WT-WPH groups; the interaction genotype 3 treatment was significant (P ≤ 0.005). Insulin release from pancreatic islets isolated from the OB-WPH group was greater (P ≤ 0.005) than that from the OB group but did not differ between the WT-WPH and WT groups; the interaction genotype 3 treatment was not significant. In conclusion, an 8-wk oral administration of WPH improved blood glucose clearance, reduced hyperinsulinemia, and restored the pancreatic islet capacity to secrete insulin in response to glucosein ob/ob mice. Hence, it may be useful in diabetes management.

    Related items

    Showing items related by title, author, creator and subject.

    • Nutrient regulation of insulin secretion and action
      Newsholme, Philip; Cruzat, Vinicius; Arfuso, Frank; Keane, Kevin (2014)
      Pancreatic ß-cell function is of critical importance in the regulation of fuel homoeostasis, and metabolic dysregulation is a hallmark of diabetes mellitus (DM). The ß-cell is an intricately designed cell type that couples ...
    • Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes
      Solimena, Michele; Schulte, A.; Marselli, L.; Ehehalt, F.; Richter, D.; Kleeberg, M.; Mziaut, H.; Knoch, K.; Parnis, J.; Bugliani, M.; Siddiq, A.; Jörns, A.; Burdet, F.; Liechti, R.; Suleiman, M.; Margerie, D.; Syed, F.; Distler, M.; Grützmann, R.; Petretto, E.; Moreno-Moral, A.; Wegbrod, C.; Sönmez, A.; Pfriem, K.; Friedrich, A.; Meinel, J.; Wollheim, C.; Baretton, G.; Scharfmann, R.; Nogoceke, E.; Bonifacio, E.; Sturm, D.; Meyer-Puttlitz, B.; Boggi, U.; Saeger, H.; Filipponi, F.; Lesche, M.; Meda, P.; Dahl, A.; Wigger, L.; Xenarios, I.; Falchi, M.; Thorens, B.; Weitz, J.; Bokvist, K.; Lenzen, S.; Rutter, G.; Froguel, P.; von Bülow, M.; Ibberson, M.; Marchetti, P. (2018)
      © 2017, The Author(s). Aims/hypothesis: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: ...
    • Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase
      Simões, D.; Riva, P.; Peliciari-Garcia, R.; Cruzat, Vinicius; Graciano, M.; Munhoz, A.; Taneda, M.; Cipolla-Neto, J.; Carpinelli, A. (2016)
      Melatonin is a hormone synthesized in the pineal gland, which modulates several functions within the organism, including the synchronization of glucose metabolism and glucosestimulated insulin secretion (GSIS). Melatonin ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.