Show simple item record

dc.contributor.authorXu, F.
dc.contributor.authorZhang, Xinguang
dc.contributor.authorWu, Yong Hong
dc.contributor.authorCaccetta, Louis
dc.date.accessioned2017-01-30T13:44:31Z
dc.date.available2017-01-30T13:44:31Z
dc.date.created2016-02-07T19:30:22Z
dc.date.issued2016
dc.identifier.citationXu, F. and Zhang, X. and Wu, Y.H. and Caccetta, L. 2016. Global well-posedness of the non-isentropic full compressible magnetohydrodynamic equations. Acta Mathematica Sinica, English Series. 32 (2): pp. 227-250.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/34607
dc.identifier.doi10.1007/s10114-016-4799-6
dc.description.abstract

In this paper, we are concerned with Cauchy problem for the multi-dimensional (N = 3) non-isentropic full compressible magnetohydrodynamic equations. We prove the existence and uniqueness of a global strong solution to the system for the initial data close to a stable equilibrium state in critical Besov spaces. Our method is mainly based on the uniform estimates in Besov spaces for the proper linearized system with convective terms.

dc.publisherSpringer
dc.titleGlobal well-posedness of the non-isentropic full compressible magnetohydrodynamic equations
dc.typeJournal Article
dcterms.source.volume32
dcterms.source.number2
dcterms.source.startPage227
dcterms.source.endPage250
dcterms.source.issn1439-8516
dcterms.source.titleActa Mathematica Sinica, English Series
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record