Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Characterization and Properties of Recycled Cellulose Fibre- Reinforced Epoxy-Hybrid Clay Nanocomposites

    Access Status
    Fulltext not available
    Authors
    Alamri, Hatem
    Low, It Meng
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Alamri, H. and Low, I.M. 2010. Characterization and Properties of Recycled Cellulose Fibre- Reinforced Epoxy-Hybrid Clay Nanocomposites. Materials Science Forum. 654-656: pp. 2624-2627.
    Source Title
    Materials Science Forum
    DOI
    10.4028/www.scientific.net/MSF.654-656.2624
    ISSN
    02555476
    School
    Department of Physics and Astronomy
    URI
    http://hdl.handle.net/20.500.11937/34649
    Collection
    • Curtin Research Publications
    Abstract

    In this paper, epoxy eco-composites reinforced with recycled cellulose fiber (RCF) and nano-fillers such as nano-clay platelets (30B) and halloysite nanotubes (HNTs), have been fabricated and investigated. The influences of RCF/nano-filler dispersion on the microstructure, physical and mechanical characteristics have been characterized. Results indicate that flexural strength decreased for the majority of study samples due to the poor dispersion of nano-fillers and the existence of voids within the samples. In contrast, impact toughness and fracture toughness were improved for all reinforced samples. The effect of water absorption was positive in terms of enhancing the impact toughness of the composites. Addition of nanoclay was found to increase the porosities of all nanocomposites.

    Related items

    Showing items related by title, author, creator and subject.

    • Microstructural design and properties of high performance recycled cellulose fibre reinforced polymer eco-nanocomposites
      Alamri, Hatem Rashed (2012)
      In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
    • Electrospun 3D composite nano-flowers for high performance triple-cation perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Pal, B.; Jose, R.; Upama, M.; Wang, D.; Goncales, V.; Xu, C.; Haque, F.; Uddin, A. (2018)
      Three dimensional (3-D) flower-shaped SnO2-TiO2 nano-structure has been synthesized by electro-spinning and incorporated on top of sol-gel ZnO ETL to fabricate highly efficient (highest efficiency: 17.25%) triple-cation ...
    • Effect of nano-clay on mechanical and thermal properties of geopolymer
      Assaedi, H.; Shaikh, Faiz; Low, It Meng (2016)
      The effect of nano-clay platelets (Cloisite 30B) on the mechanical and thermal properties of fly ash geopolymer has been investigated in this paper. The nano-clay platelets are added to reinforce the geopolymer at loadings ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.