Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Sugarcane bagasse - The future composite material: A literature review

    Access Status
    Fulltext not available
    Authors
    Debnath, Sujan
    Rahman, Ekhlasur
    Das, Cecilia
    Loh, Y.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Loh, Y.R. and Debnath, Sujan and Rahman, Ekhlasur and Das, Cecilia. 2013. Sugarcane bagasse - The future composite material: A literature review. Resources, Conservation and Recycling. 75: pp. 14-22.
    Source Title
    Resources, Conservation & Recycling
    DOI
    10.1016/j.resconrec.2013.03.002
    ISSN
    0921-3449
    URI
    http://hdl.handle.net/20.500.11937/34794
    Collection
    • Curtin Research Publications
    Abstract

    The natural, bio-degradable features and chemical constituents of the sugarcane bagasse (SCB) have been attracting attention as a highly potential and versatile ingredient in composite materials. Eco-friendly and low cost considerations have set the momentum for material science researchers to identify green materials that give low pollutant indexes. Various components of SCB is shown to possess the ability of being applied as raw material for manufacturing of composite materials at multiple levels of properties and performances. Studies on the impacts, performances and applications of SCB in its original condition; transformed forms; treated with appropriate chemicals and/or processes; in combination with materials of distinct properties and manipulation of manufacturing methodologies have been duly considered. This paper attempts to summarize a review of current literature on the extensive studies that have been undertaken in an attempt to explore plausible applications and potentials of SCB for composite material.

    Related items

    Showing items related by title, author, creator and subject.

    • Flexural behaviour of hybrid fibre-reinforced polymer (FRP) matrix composites
      Sudarisman (2009)
      The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
    • Microstructural design and properties of high performance recycled cellulose fibre reinforced polymer eco-nanocomposites
      Alamri, Hatem Rashed (2012)
      In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
    • The isotopic composition of Zn in natural materials
      Ghidan, Osama Yousef Ali (2008)
      This work represents the most recent development of Zn isotopic measurements, and the first identification of Zn isotopic fractionation in natural materials using Thermal Ionisation Mass Spectrometry (TIMS). The procedures ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.