Power system stability enhancement using flux control for excitation system
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Collection
Abstract
This paper proposes a new controller for the excitation system to improve rotor angle stability. The proposed controller uses energy function to predict desired flux for the generator to achieve improved first swing stability and enhanced system damping. The controller is designed through predicting the desired value of flux for the future step of the system and then obtaining appropriate supplementary control input for the excitation system. The simulations are performed on Single-Machine-Infinite-Bus system and the results verify the efficiency of the controller. The proposed method facilitates the excitation system with a feasible and reliable controller for severe disturbances.
Related items
Showing items related by title, author, creator and subject.
-
Nandong, Jobrun (2010)The vast majority of chemical and bio-chemical process plants are normally characterized by large number of measurements and relatively small number of manipulated variables; these thin plants have more output than input ...
-
Lin, W.; Lin, Y.; Song, G.; Li, Jun (2016)To explore the application of traditional tuned mass dampers (TMDs) to the earthquake induced vibration control problem, a pounding tuned mass damper (PTMD) is proposed by adding a viscoelastic limitation to the traditional ...
-
Hosseinzadeh, N.; Seyoum, D.; Wolfs, Peter (2007)Fuzzy logic systems (FLS) have been designed to control a self-excited induction generator (SEIG), which is used as a brake. This electrical brake has been designed for the sugar cane industry in Queensland, Australia, ...