Mesenchymal stem cells protect islets from hypoxia/reoxygenation-induced injury
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
Hypoxia/reoxygenation (H/R)-induced injury is the key factor associated with islet graft dysfunction. This study aims to examine the effect of mesenchymal stem cells (MSCs) on islet survival and insulin secretion under H/R conditions. Islets from rats were isolated, purified, cultured with or without MSCs, and exposed to hypoxia (O2 = 1%) for 8 h and reoxygenation for 24 and 48 h, respectively. Islet function was evaluated by measuring basal and glucose-stimulated insulin secretion (GSIS). Apoptotic islet cells were quantified using Annexin V-FITC. Anti-apoptotic effects were confirmed by mRNA expression analysis of hypoxia-resistant molecules, HIF-1a, HO-1, and COX-2, using semi-quantitative retrieval polymerase chain reaction (RT-PCR). Insulin expression in the implanted islets was detected by immunohistological analysis. The main results show that the stimulation index (SI) of GSIS was maintained at higher levels in islets co-cultured with MSCs. The MSCs protected the islets from H/R-induced injury by decreasing the apoptotic cell ratio and increasing HIF-1a, HO-1, and COX-2 mRNA expression. Seven days after islet transplantation, insulin expression in the MSC-islets group significantly differed from that of the islets-alone group. We proposed that MSCs could promote anti-apoptotic gene expression by enhancing their resistance to H/R-induced apoptosis and dysfunction. This study provides an experimental basis for therapeutic strategies based on enhancing islet function. © 2010 John Wiley & Sons, Ltd.
Related items
Showing items related by title, author, creator and subject.
-
Carlessi, Rodrigo; Lemos, N.; Dias, A.; Oliveira, F.; Brondani, L.; Canani, L.; Bauer, A.; Leitão, C.; Crispim, D. (2014)Islet quality loss after isolation from brain-dead donors still hinders the implementation of human islet transplantation for treatment of type 1 diabetes. In this scenario, systemic inflammation elicited by donor brain ...
-
Da Silva Krause, M.; Bittencourt, A.; de Bittencourt, P.; McClenaghan, N.; Flatt, P.; Murphy, C.; Newsholme, Philip (2012)Interleukin-6 (IL6) has recently been reported to promote insulin secretion in a glucagon-like peptide-1-dependent manner. Herein, the direct effects of IL6 (at various concentrations from 0 to 1000 pg/ml) on pancreatic ...
-
Solimena, Michele; Schulte, A.; Marselli, L.; Ehehalt, F.; Richter, D.; Kleeberg, M.; Mziaut, H.; Knoch, K.; Parnis, J.; Bugliani, M.; Siddiq, A.; Jörns, A.; Burdet, F.; Liechti, R.; Suleiman, M.; Margerie, D.; Syed, F.; Distler, M.; Grützmann, R.; Petretto, E.; Moreno-Moral, A.; Wegbrod, C.; Sönmez, A.; Pfriem, K.; Friedrich, A.; Meinel, J.; Wollheim, C.; Baretton, G.; Scharfmann, R.; Nogoceke, E.; Bonifacio, E.; Sturm, D.; Meyer-Puttlitz, B.; Boggi, U.; Saeger, H.; Filipponi, F.; Lesche, M.; Meda, P.; Dahl, A.; Wigger, L.; Xenarios, I.; Falchi, M.; Thorens, B.; Weitz, J.; Bokvist, K.; Lenzen, S.; Rutter, G.; Froguel, P.; von Bülow, M.; Ibberson, M.; Marchetti, P. (2018)© 2017, The Author(s). Aims/hypothesis: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: ...