Symbiont acquisition strategy drives host-symbiont associations in the southern Great Barrier Reef
Access Status
Authors
Date
2008Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Coral larvae acquire populations of the symbiotic dinoflagellate Symbiodinium from the external environment (horizontal acquisition) or inherit their symbionts from the parent colony (maternal or vertical acquisition). The effect of the symbiont acquisition strategy on Symbiodinium-host associations has not been fully resolved. Previous studies have provided mixed results, probably due to factors such as low sample replication of Symbiodinium from a single coral host, biogeographic differences in Symbiodinium diversity, and the presence of some apparently host-specific symbiont lineages in coral with either symbiont acquisition strategies. This study set out to assess the effect of the symbiont acquisition strategy by sampling Symbiodinium from 10 coral species (five with a horizontal and five with a vertical symbiont acquisition strategy) across two adjacent reefs in the southern Great Barrier Reef. Symbiodinium diversity was assessed using single-stranded conformational polymorphism of partial nuclear large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region. The Symbiodinium population in hosts with a vertical symbiont acquisition strategy partitioned according to coral species, while hosts with a horizontal symbiont acquisition strategy shared a common symbiont type across the two reef environments. Comparative analysis of existing data from the southern Great Barrier Reef found that the majority of corals with a vertical symbiont acquisition strategy associated with distinct species- or genus-specific Symbiodinium lineages, but some could also associate with symbiont types that were more commonly found in hosts with a horizontal symbiont acquisition strategy. © 2008 Springer-Verlag.
Related items
Showing items related by title, author, creator and subject.
-
Fabina, N.; Putnam, H.; Franklin, E.; Stat, Michael; Gates, R. (2012)Most reef-building corals in the order Scleractinia depend on endosymbiotic algae in the genus Symbiodinium for energy and survival. Significant levels of taxonomic diversity in both partners result in numerous possible ...
-
Stat, Michael; Morris, E.; Gates, R. (2008)Symbioses are widespread in nature and occur along a continuum from parasitism to mutualism. Coral-dinoflagellate symbioses are defined as mutualistic because both partners receive benefit from the association via the ...
-
Fabina, N.; Putnam, H.; Franklin, E.; Stat, Michael; Gates, R. (2013)Climate change-driven stressors threaten the persistence of coral reefs worldwide. Symbiotic relationships between scleractinian corals and photosynthetic endosymbionts (genus Symbiodinium) are the foundation of reef ...