Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Lewis base complexes of AlH3: Structural determination of monomeric and polymeric adducts by X-ray crystallography and DFT calculations

    Access Status
    Fulltext not available
    Authors
    Humphries, Terry
    Munroe, K.
    Decken, A.
    McGrady, G.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Humphries, T. and Munroe, K. and Decken, A. and McGrady, G. 2013. Lewis base complexes of AlH3: Structural determination of monomeric and polymeric adducts by X-ray crystallography and DFT calculations. Dalton Transactions. 42 (19): pp. 6953-6964.
    Source Title
    Dalton Transactions
    DOI
    10.1039/c3dt00046j
    ISSN
    1477-9226
    School
    Department of Physics and Astronomy
    URI
    http://hdl.handle.net/20.500.11937/35756
    Collection
    • Curtin Research Publications
    Abstract

    The AlH3 adducts of TMEDA (Me2NCH2CH 2NMe2), DIOX (O(CH2CH2) 2O), TEA (Et3N), BDMA (PhNMe2), and TMPDA (Me2NCH2CH2CH2NMe2) have each been characterised by single-crystal X-ray diffraction at low temperature, by 1H, 14N and 27Al NMR and FT-Raman and FT-IR spectroscopy, and by DFT calculations and elemental analysis. Hence, AlH 3·TMEDA and AlH3·DIOX are both shown to adopt a polymeric structure, with the bidentate ligand bridging two Al centres, each of which adopts a trigonal bipyramidal (TBP) arrangement with equatorial hydride moieties. The 1 : 2 adduct AlH3·2BDMA is monomeric but the geometry at the Al centre resembles closely that of the polymeric TMEDA and DIOX complexes. AlH3·TEA alone adopts a monomeric structure in which the Al centre is tetrahedrally coordinated by three hydride and one amine ligand. The Al-L bond distance of 2.0240(17) Å for AlH 3·TEA is the shortest of all the complexes in this study, and AlH3·TEA also possesses the shortest Al-H bonds. AlH 3·DIOX has the shortest Al-L bond distance of the polymeric species (2.107(14) Å) on account of the higher electronegativity of the oxygen donor. The structure of AlH3·TMEDA was determined at low temperature (monoclinic space group P21/c), and salient features are compared to the previous room temperature study, for which a highly disordered orthorhombic space group (P212121) was reported. The polymeric structures appear to be stabilised by a number of intermolecular interactions and unconventional hydrogen bonds; these are most pronounced for AlH3·DIOX, whose chains are connected by highly directional C-H?H-Al bonding with an H?H distance of 2.32(6) Å. © The Royal Society of Chemistry 2013.

    Related items

    Showing items related by title, author, creator and subject.

    • Formation and characteristics of glucose oligomers during the hydrolysis of cellulose in hot-compressed water
      Yu, Yun (2009)
      Energy production from fossil fuels results in significant carbon dioxide emission, which is a key contributor to global warming and the problems related to climate change. Biomass is recognized as an important part of ...
    • Synergistic interactions of plasticizers and nanoclays in hydrophilic starch based bionanocomposites
      Liu, HuiHua (2011)
      Depletion of non-renewable resources and exorbitant levels of carbon dioxide emissions have questioned the further usage of traditional plastics. The imbalance in global sustainability has necessitated the development and ...
    • Synthesis of polymeric nanocomposite membranes for aqueous and non-aqueous media
      Rajaeian, Babak (2012)
      Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.