Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Sedimentologic to metamorphic processes recorded in the high-pressure/low-temperature Mesozoic Rosetta Marble of Anatolia

    Access Status
    Fulltext not available
    Authors
    Scheffler, F.
    Oberhänsli, R.
    Pourteau, Amaury
    Immenhauser, A.
    Candan, O.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Scheffler, F. and Oberhänsli, R. and Pourteau, A. and Immenhauser, A. and Candan, O. 2016. Sedimentologic to metamorphic processes recorded in the high-pressure/low-temperature Mesozoic Rosetta Marble of Anatolia. International Journal of Earth Sciences. 105 (1): pp. 225-246.
    Source Title
    International Journal of Earth Sciences
    DOI
    10.1007/s00531-015-1214-y
    ISSN
    1437-3254
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/35886
    Collection
    • Curtin Research Publications
    Abstract

    © 2015, Springer-Verlag Berlin Heidelberg. Anatolia’s high-pressure metamorphic belts are characterized in part by a Neotethyan stratigraphic succession that includes a mid-Cretaceous hemi-pelagic marble sequence. This unit contains, towards its stratigraphic top, dm-to-m-long radiating calcitic rods forming rosette-like textures. Here, we refer to these features as “Rosetta Marble”. The remarkable textural similarity of non-metamorphic selenite crystals and radiating calcite rods in the Rosetta Marble strongly suggests that these textures represent pseudomorphs after selenites. Metamorphosed hemi-pelagic limestones, dominated by Rosetta selenite pseudomorphs, are alternating with siliceous meta-sediments containing relictic radiolaria tests. This stratigraphic pattern is indicative of transient phases characterized by evaporites precipitated from basinal brines alternating with non-evaporative hemi-pelagic deposition from normal-marine seawater. The regional distribution of Rosetta Marble exposures over 600 km is indicative of basin-scale evaporitic intervals. High-pressure, low-temperature metamorphism of these rocks is witnessed by Sr-rich (up to 3500 ppm), fibrous calcite pseudomorphs after aragonite and isolated aragonite inclusions in quartz. Peak metamorphic conditions of 1.2 GPa and 300–350 °C are attested by high-Si white mica thermobarometry. The Rosetta Marble case example examines the potential to unravel the complete history from deposition to diagenesis and metamorphism of meta-sedimentary rocks.

    Related items

    Showing items related by title, author, creator and subject.

    • The origin of high δ18O zircons: marbles, megacrysts, and metamorphism
      Cavosie, Aaron; Valley, J.; Kita, N.; Spicuzza, M.; Ushikubo, T.; Wilde, Simon (2011)
      The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O ...
    • The origin of high d18O zircons: Marbles, megacrysts, and metamorphism
      Cavosie, Aaron; Valley, J.; Kita, N.; Spicuzza, M.; Ushikubo, T.; Wilde, Simon (2011)
      The oxygen isotope ratios (d18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record d18O ...
    • The evolution of the footwall to the Ronda subcontinental mantle peridotites: insights from the Nieves Unit (western Betic Cordillera)
      Mazzoli, S.; Martín-Algarra, A.; Reddy, Steven; López Sánchez-Vizcaíno, V.; Fedele, L.; Noviello, A. (2013)
      Strongly heterogeneous deformation and extreme metamorphic gradients characterize the dominantly carbonate Nieves Unit in the footwall to the Ronda mantle extrusion wedge in the western Betic Cordillera. A well-developed ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.