Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks - A review

    152406_24471_MuellerGurevichLebedev-Journal- Seismic wave attenuation and dispersion.pdf (701.4Kb)
    Access Status
    Open access
    Authors
    Mueller, T.
    Gurevich, Boris
    Lebedev, Maxim
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Mueller, Tobias M. and Gurevich, Boris and Lebedev, Maxim. 2010. Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks - A review. Geophysics. 75 (5): pp. 75A147-75A164.
    Source Title
    Geophysics
    DOI
    10.1190/1.3463417
    ISSN
    0016-8033
    School
    Department of Exploration Geophysics
    Remarks

    Published by the Society of Exploration Geophysicists. © 2010 Society of Exploration Geophysicists.

    Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks --- A review Tobias M. Muller, Boris Gurevich, and Maxim Lebedev, Geophysics 75, 75A147 (2010), DOI:10.1190/1.3463417

    A link to the Society of Exploration Geophysics website is available from http://segdl.aip.org

    URI
    http://hdl.handle.net/20.500.11937/35921
    Collection
    • Curtin Research Publications
    Abstract

    One major cause of elastic wave attenuation in heterogeneous porous media is wave-induced flow of the pore fluid between heterogeneities of various scales. It is believed that for frequencies below 1 kHz, the most important cause is the wave-induced flow between mesoscopic inhomogeneities, which are large compared with the typical individual pore size but small compared to the wavelength. Various laboratory experiments in some natural porous materials provide evidence for the presence of centimeter-scale mesoscopic heterogeneities. Laboratory and field measurements of seismic attenuation in fluid-saturated rocks provide indications of the role of the wave-induced flow. Signatures of wave-induced flow include the frequency and saturation dependence of P-wave attenuation and its associated velocity dispersion, frequency-dependent shear-wave splitting, and attenuation anisotropy. During the last four decades, numerous models for attenuation and velocity dispersion from wave-induced flow have been developed with varying degrees of rigor and complexity.These models can be categorized roughly into three groups according to their underlying theoretical framework. The first group of models is based on Biot's theory of poroelasticity. The second group is based on elastodynamic theory where local fluid flow is incorporated through an additional hydrodynamic equation. Another group of models is derived using the theory of viscoelasticity. Though all models predict attenuation and velocity dispersion typical for a relaxation process, there exist differences that can be related to the type of disorder (periodic, random, space dimension) and to the way the local flow is incorporated.The differences manifest themselves in different asymptotic scaling laws for attenuation and in different expressions for characteristic frequencies. In recent years, some theoretical models of wave-induced fluid flow have been validated numerically, using finite-difference, finite-element, and reflectivity algorithms applied to Biot's equations of poroelasticity. Application of theoretical models to real seismic data requires further studies using broadband laboratory and field measurements of attenuation and dispersion for different rocks as well as development of more robust methods for estimating dissipation attributes from field data.

    Related items

    Showing items related by title, author, creator and subject.

    • Elastic wave attenuation, dispersion and anisotropy in fractured porous media
      Galvin, Robert (2007)
      Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
    • Comparative review of theoretical models for elastic wave attenuation and dispersion in partially saturated rocks
      Toms, J.; Mller, T.; Ciz, Radim; Gurevich, Boris (2006)
      Saturation of porous rocks with a mixture of two fluids (known as partial saturation) has a substantial effect on the seismic waves propagating through these rocks. In particular, partial saturation causes significant ...
    • Effect of fluid distribution on compressional wave propagation in partially saturated rocks
      Toms, Julianna J. (2008)
      Partial saturation of porous rock by two fluids substantially affects compressional wave propagation. In particular, partial saturation causes significant attenuation and dispersion due to wave-induced fluid flow. Such ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.