Metallic lead nanospheres discovered in ancient zircons
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Collection
Abstract
Zircon (ZrSiO4) is the most commonly used geochronometer, preserving age and geochemical information through a wide range of geological processes. However, zircon U–Pb geochronology can be affected by redistribution of radiogenic Pb, which is incompatible in the crystal structure. This phenomenon is particularly common in zircon that has experienced ultra-high temperature metamorphism, where ion imaging has revealed submicrometer domains that are sufficiently heterogeneously distributed to severely perturb ages, in some cases yielding apparent Hadean (>4 Ga) ages from younger zircons. Documenting the composition and mineralogy of these Pb-enriched domains is essential for understanding the processes of Pb redistribution in zircon and its effects on geochronology. Using high-resolution scanning transmission electron microscopy, we show that Pb-rich domains previously identified in zircons from East Antarctic granulites are 5–30 nm nanospheres of metallic Pb. They are randomly distributed with respect to zircon crystallinity, and their association with a Ti- and Al-rich silica melt suggests that they represent melt inclusions generated during ultra-high temperature metamorphism. Metallic Pb is exceedingly rare in nature and previously has not been reported in association with high-grade metamorphism. Formation of these metallic nanospheres within annealed zircon effectively halts the loss of radiogenic Pb from zircon. Both the redistribution and phase separation of radiogenic Pb in this manner can compromise the precision and accuracy of U–Pb ages obtained by high spatial resolution methods.
Related items
Showing items related by title, author, creator and subject.
-
Lu, Y.; Kerrich, R.; Kemp, A.; McCuaig, T.; Hou, Z.; Hart, C.; Li, Zheng-Xiang; Cawood, P.; Bagas, L.; Yang, Z.; Cliff, J.; Belousova, E.; Jourdan, Fred; Evans, Noreen (2013)The Yao’an porphyry Au system, Machangqing porphyry Cu-Mo system, and Beiya porphyry-skarn Au system, are spatially and temporally associated with potassic felsic intrusions emplaced during the Eocene to Oligocene epochs ...
-
Li, H.; Wu, J.; Evans, Noreen; Jiang, W.; Zhou, Z. (2018)© 2018 Elsevier B.V. Highly evolved Sn-polymetallic mineralization-related granites are intensively developed in the Nanling Range of South China. In this study, two types of granitic rocks (albite granite and greisenized ...
-
Bellucci, J.; Nemchin, Alexander; Grange, M.; Robinson, K.; Collins, G.; Whitehouse, M.; Snape, J.; Norman, M.; Kring, D. (2019)A felsite clast in lunar breccia Apollo sample 14321, which has been interpreted as Imbrium ejecta, has petrographic and chemical features that are consistent with formation conditions commonly assigned to both lunar and ...