An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2015 Springer Science+Business Media New York In this paper, a class of separable convex optimization problems with linear coupled constraints is studied. According to the Lagrangian duality, the linear coupled constraints are appended to the objective function. Then, a fast gradient-projection method is introduced to update the Lagrangian multiplier, and an inexact solution method is proposed to solve the inner problems. The advantage of our proposed method is that the inner problems can be solved in an inexact and parallel manner. The established convergence results show that our proposed algorithm still achieves optimal convergence rate even though the inner problems are solved inexactly. Finally, several numerical experiments are presented to illustrate the efficiency and effectiveness of our proposed algorithm.
Related items
Showing items related by title, author, creator and subject.
-
Jiang, Lin (2020)In this thesis, robust and multi-objective portfolio selection problem will be studied. New models and computational algorithms will be developed to solve the proposed models. In particularly, we have studied multi-objective ...
-
Sun, Jie; Zhang, S. (2010)We propose a modified alternating direction method for solving convex quadratically constrained quadratic semidefinite optimization problems. The method is a first-order method, therefore requires much less computational ...
-
Gong, Z.; Liu, C.; Han, M.; Teo, Kok Lay; Wu, Yong Hong (2018)© 2018 IEEE. This paper considers time-delay estimation problem involving nonlinear dynamic systems using inexact system output. We first propose a new robust time-delay formulation, in which the variance of the least-squares ...