Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Use of the Weibull Equation to Approximate Diffusive Release from Particles in a Closed System

    Access Status
    Fulltext not available
    Authors
    Farr, R.S.
    Goh, Aaron
    Yong, F.Y.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Farr, R.S. and Goh, A. and Yong, F.Y. 2012. Use of the Weibull Equation to Approximate Diffusive Release from Particles in a Closed System. Computers and Chemical Engineering. 39: pp. 33-40.
    Source Title
    Computers and Chemical Engineering
    DOI
    10.1016/j.compchemeng.2011.09.012
    ISSN
    00981354
    URI
    http://hdl.handle.net/20.500.11937/36263
    Collection
    • Curtin Research Publications
    Abstract

    We consider the problem of Fickian diffusion of a solute (or heat) into or out of a suspension of particles, in a well-mixed solvent. By combining a simple numerical scheme with a Laplace transform method, we are able to efficiently solve this problem for different particle volume fractions (including accumulation of solute in the liquid phase), shapes (spheres, cubes and cylinders of different aspect ratios) and particle size distributions (assumed to be log-normal). We approximate the results by a Weibull function, and thereby provide a physical calibration for the parameters in this function when used as an approximation for our solutions. We test our calculation by measuring salt release profiles from different size distributions of agar cubes, and then use the predicted Weibull equation to deduce the diffusivity of salt in this material.

    Related items

    Showing items related by title, author, creator and subject.

    • Mathematical modelling of particle-fluid flows in microchannels
      Chayantrakom, Kittisak (2009)
      Flows of fluids and solid particles through microchannels have a very wide range of applications in biological and medical science and engineering. Understanding the mechanism of microflows will help to improve the ...
    • A network model for capture of suspended particles and droplets in porous media
      Gao, Changhong (2008)
      Produced water presents economical and environmental challenges to oil producers. Downhole separation technology is able to separate oil or gas from produced fluid in downhole environment and injects waste water into ...
    • Multi-scale modelling of Gibbsite calcination in a fluidized bed reactor
      Amiri, Amirpiran (2013)
      The alumina industry provides the feedstock for aluminium metal production and contributes to around A$6 billion of Australian exports annually. One of the most energy-intensive parts of alumina production, with a strong ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.