Cytoarchitecture of the spinal cord of the postnatal (P4) mouse
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
Collection
Abstract
Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord.
Related items
Showing items related by title, author, creator and subject.
-
Liang, Huazheng; Paxinos, George; Watson, Charles (2012)We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into ...
-
Liang, H.; Wang, S.; Francis, R.; Whan, R.; Watson, Charles; Paxinos, G. (2015)Background: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non- serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the ...
-
Liang, H.; Wang, S.; Francis, R.; Whan, R.; Watson, Charles; Paxinos, G. (2015)Background: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non-serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the ...