Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Soil vs. canopy seed storage and plant species coexistence in species-rich Australian shrublands

    20599_downloaded_stream_55.pdf (302.1Kb)
    Access Status
    Open access
    Authors
    Enright, Neal
    Mosner, E.
    Miller, Ben
    Johnson, Nicole
    Lamont, Byron
    Date
    2007
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Enright, N. J. and Mosner, E and Miller, B. P. and Johnson, N. and Lamont, Byron B.. 2007. Soil vs. canopy seed storage and plant species coexistence in species-rich Australian shrublands. Ecology. 88 (9): 2292-2304.
    Source Title
    Ecology.
    DOI
    10.1890/06-1343.1
    Faculty
    Division of Resources and Environment
    Muresk Institute
    Department of Environmental Biology
    URI
    http://hdl.handle.net/20.500.11937/36364
    Collection
    • Curtin Research Publications
    Abstract

    The fire-prone shrublands of southwestern Australia are renowned for their high plant species diversity and prominence of canopy seed storage (serotiny). We compared species richness, abundance, and life history attributes for soil and canopy seed banks in relation to extant vegetation among four sites with different substrate conditions and high species turnover (50 80%) to identify whether this unusual community-level organization of seed storage might contribute to maintenance of high species richness.Soil seed bank (SSB) densities were low to moderate (233 1435 seeds/m2) compared with densities for other Mediterranean-type vegetation and were lowest for sites with highest canopy seed bank (CSB) species richness and lowest nutrient availability, but not richness or abundance of resprouters. Annuals were infrequent in the lowest nutrient sites, but there was no evidence that small SSB size was due to low seed inputs or a trade-off between seed production/storage and seed size in response to low nutrient availability. Sorensen's similarity between SSB and extant vegetation was 26 43% but increased to 54 57% when the CSB was included, representing levels higher than reported for most other ecosystems. Resprouting species were well represented in both the SSB and CSB, and there was no evidence for lower seed production in resprouters than in non-sprouters overall. The SSB and CSB held no species in common and were characterized by markedly different seed dispersal attributes, with winged or small seeds in the CSB and seeds dispersed by ants, birds, and wind (though none with wings) in the SSB. There was no evidence of spatial differentiation in the distribution of seeds of SSB species between vegetated and open microsites that might facilitate species coexistence, but most woody non-sprouters showed aggregation at scales of 1 2 m, implying limited seed dispersal. High similarity between overall seed bank (SSB + CSB) and extant species composition, high number of resprouting species, and seed dispersal processes before (SSB) and after fire (CSB) leading to differential spatial aggregation of post-fire recruits from the two seed bank types may buffer species composition against rapid change and provide a mechanism for maintaining species coexistence at the local scale.

    Related items

    Showing items related by title, author, creator and subject.

    • Fire impacts on restored shrublands following mining for heavy minerals near Eneabba, southwestern Australia
      Herath, Dulana Nilupul (2008)
      Following mineral-sand mining in the northern sandplains near Eneabba, southwestern Australia, rehabilitation managers have the difficult task of restoring shrubland communities of exceptional plant species richness. ...
    • Resprouters, assisted by somatic mutations, are as genetically diverse as nonsprouters in the world's fire-prone ecosystems
      Fowler, W.; Deng, X.; Lamont, Byron; He, Tianhua (2018)
      In fire-prone environments worldwide, resprouters mostly regenerate vegetatively after fire, whereas non (re)sprouters are killed by fire and rely entirely on stored seeds (soil or canopy storage) for regeneration. This ...
    • Resistance and resilience to changing climate and fire regime depend on plant functional traits
      Enright, N.; Fontaine, J.; Lamont, Byron; Miller, B.; Westcott, V. (2014)
      Changing disturbance-climate interactions will drive shifts in plant communities: these effects are not adequately quantified by environmental niche models used to predict future species distributions. We quantified the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.