Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Improvement of the Derjaguin−Broekhoff−de Boer Theory for Capillary Condensation/Evaporation of Nitrogen in Mesoporous Systems and Its Implications for Pore Size Analysis of MCM-41 Silicas and Related Materials

    Access Status
    Fulltext not available
    Authors
    Kowalczyk, Piotr
    Jaroniec, M.
    Terzyk, A.
    Kaneko, K.
    Do, D.
    Date
    2005
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kowalczyk, Piotr and Jaroniec, Mietek and Terzyk, Artur P. and Kaneko, Katsumi and Do, Duong D. 2005. Improvement of the Derjaguin−Broekhoff−de Boer Theory for Capillary Condensation/Evaporation of Nitrogen in Mesoporous Systems and Its Implications for Pore Size Analysis of MCM-41 Silicas and Related Materials. Langmuir. 21 (5): pp. 1827-1833.
    Source Title
    Langmuir
    DOI
    10.1021/la047645n
    ISSN
    0743-7463
    School
    Department of Applied Chemistry
    URI
    http://hdl.handle.net/20.500.11937/36948
    Collection
    • Curtin Research Publications
    Abstract

    In this work, we propose an improvement of the classical Derjaguin−Broekhoff−de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs−Tolman−Koenig−Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk−Jaroniec−Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than 4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.

    Related items

    Showing items related by title, author, creator and subject.

    • Improvement of the Derjaguin-Broekhoff-de Boer Theory for the Capillary Condensation/Evaporation of Nitrogen in Spherical Cavities and Its Application for the Pore Size Analysis of Silicas with Ordered Cagelike Mesopores
      Kowalczyk, Poitr; Jaroniec, M.; Kaneko, K.; Terzyk, A.; Gauden, P. (2005)
      In a previous work, we proposed an improvement of the Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in open-ended cylindrical mesopores. In this paper, we report a further extension ...
    • Nanoscale pore structure characterization of the Bakken shale in the USA
      Liu, K.; Ostadhassan, M.; Zhou, J.; Gentzis, T.; Rezaee, Reza (2017)
      Understanding the pore structures of unconventional reservoirs such as shale can assist in estimating their elastic transport and storage properties, thus enhancing the hydrocarbon recovery from such massive resources. ...
    • Comparisons of pore size distribution: A case from the Western Australian gas shale formations
      Al Hinai, Adnan; Rezaee, M. Reza; Esteban, L.; Labani, Mohammad Mahdi (2014)
      Pore structure of shale samples from Triassic Kockatea and Permian Carynginia formations in the Northern Perth Basin, Western Australia is characterized. Transport properties of a porous media are regulated by the topology ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.