Performance and stability of La0.8Sr0.2MnO3 cathode promoted with palladium based catalysts in solid oxide fuel cells
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The effect of catalyst loading, operation temperature and co-infiltration of the palladium-based catalystson the performance and stability of La0.8Sr0.2MnO3 (LSM) cathode of solid oxide fuel cells (SOFCs) isinvestigated. The result shows that adding a small amount of Pd catalyst (0.08mgcm-2) has a remarkable effect on the reduction of overpotential of LSM cathodes and high palladium loading is detrimental to the electrochemical activity of LSM cathodes. The performance and stability of the Pd-impregnated LSM cathodes can be enhanced significantly by co-infiltration of palladium with either 20 mol% of silver or 5 mol% of cobalt. Increased stability of the co-infiltrated catalyst materials is probably related to the enhanced resistance of the co-impregnated Pd0.95Co0.05 and Pd0.8Ag0.2 nanoparticles against agglomeration and sintering at SOFC operation temperatures. The results indicate the co-impregnation is effective not only to enhance the electrochemical activity but also to improve the stability of LSM cathodes for the O2 reduction reaction of SOFCs.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, J.; Aili, D.; Bradley, J.; Kuang, H.; Pan, C.; De Marco, Roland; Li, Q.; Jiang, S. (2017)© 2017 The Electrochemical Society. Most recently, we developed a phosphotungstic acid impregnated mesoporous silica (PWA-meso-silica) and phosphoric acid doped polybenzimidazole (PA/PBI) composite membrane for use in ...
-
Ai, Na; Jiang, San Ping; Lü, Z.; Chen, Kongfa; Su, W. (2010)A nanostructured cathode is fabricated by incorporating a mixed ionic and electronic conducting (MIEC) perovskite, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), via ion impregnation into the most common, highly electronic conducting, ...
-
Liu, Y.; Wang, F.; Chi, B.; Pu, J.; Jian, L.; Jiang, San Ping (2013)The performance degradation of composite cathodes of La0.6Sr0.4Co0.2Fe0.8O3−δ and Gd-doped ceria (LSCF–GDC), prepared by impregnating the porous GDC scaffold with a nitrate solution containing La, Sr, Co and Fe in desired ...