A Modification to the Goldstein RadarInterferogram Filter
Access Status
Authors
Date
2003Type
Metadata
Show full item recordCitation
Source Title
Faculty
Remarks
Copyright 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Collection
Abstract
We present a modification to the adaptive Goldstein radar interferogram filter which improves the quality of interferometry products. The proposed approach makes the Goldstein filter parameter alpha dependent on coherence, suchthat incoherent areas are filtered more than coherent areas. This modification minimizes loss of signal while still reducing the level of noise.
Related items
Showing items related by title, author, creator and subject.
-
Baran, Ireneusz (2004)Synthetic aperture radar interferometry (InSAR) is a technique that enables generation of Digital Elevation Models (DEMs) and detection of surface motion at the centimetre level using radar signals transmitted from a ...
-
Tseng, Chien H. (1999)The design of envelope-constrained (EC) filters is considered for the time-domain synthesis of filters for signal processing problems. The objective is to achieve minimal noise enhancement where the shape of the filter ...
-
Kim, Du Yong; Jeon, M. (2014)Data fusion is an important issue for object tracking in autonomous systems such as robotics and surveillance. In this paper, we present a multiple-object tracking system whose design is based on multiple Kalman filters ...