Symmetric Difference-Free and Symmetric Difference-Closed Collections of Sets
Access Status
Fulltext not available
Authors
Gamble, Gregory
Simpson, Jamie
Date
2013Type
Journal Article
Metadata
Show full item recordCitation
Gamble, G. and Simpson, J. 2013. Symmetric Difference-Free and Symmetric Difference-Closed Collections of Sets. Graphs and Combinatorics. [In Press].
Source Title
Graphs and Combinatorics
ISSN
Collection
Abstract
A collection of sets is symmetric-difference-free, respectively symmetric difference-closed, if the symmetric difference of any two sets in the collection lies outside, respectively inside, the collection. Recently Buck and Godbole (Size-maximal symmetric difference-free families of subsets of [n], Graphs Combin. (to appear), 2013) investigated such collections and showed, in particular, that the largest symmetric difference-free collection of subsets of an n-set has cardinality 2 n-1. We use group theory to obtain shorter proofs of their results.
Related items
Showing items related by title, author, creator and subject.
-
Beales, Darren (2009)Aberrant motor control strategies have been identified in chronic pelvic girdle pain (PGP) subjects. It has been proposed that aberrant motor control strategies could provide a mechanism for ongoing pain and disability ...
-
Woodside, Arch (2015)Purpose: This article describes the principal limitations frequently observable in variable-based and case-based research in business-to-business (B-to-B) marketing. Focus: The limitations relate to B-to-B theory construction, ...
-
Taylor, Zoe Rebecca (2011)There has been a recent focus on investigating the properties of semi-conductors at the nanoscale as it is well known that the band-gap of semi-conducting materials is altered due to quantum confinement effects. The ...