Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Are granites and granulites consanguineous?

    Access Status
    Fulltext not available
    Authors
    Korhonen, F.
    Brown, M.
    Clark, Christopher
    Foden, J.
    Taylor, R.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Korhonen, F. and Brown, M. and Clark, C. and Foden, J. and Taylor, R. 2015. Are granites and granulites consanguineous? Geology. 43 (11): pp. 991-994.
    Source Title
    Geology
    DOI
    10.1130/G37164.1
    ISSN
    0091-7613
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/37443
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 Geological Society of America. An important question in petrology is whether the production of granite magma in orogens is a closed-system process with respect to mass input from the mantle. This is commonly addressed by inversion of geochemical data from upper crustal granites, but a complementary approach is to assess the kinship of residual granulites and associated granites in exhumed orogenic crust. Here we report geochemical data for a suite of contemporaneous metasedimentary granulites and granites from the Eastern Ghats Province, India, part of a Grenville-age orogen. The prograde metamorphic evolution involved increasing temperature (T) and pressure (P) to a metamorphic peak at >1000 °C at ~0.7 GPa, followed by slow close-to-isobaric cooling. Variations in the composition of granites are interpreted to be due to local processes, including fractionation during melting or crystallization, and/or peritectic mineral entrainment. The Nd and Sr isotope compositions of the granites can be matched by mixing between different granulites, suggesting that they may have been derived solely from sedimentary protoliths leaving behind granulite facies residues. However, by including geochemical data from an adjacent area to the north, it becomes clear that an increasingly important mass input from the mantle was involved in granite genesis from southwest to northeast in the Eastern Ghats Province, as confirmed by modeling assimilation-fractional crystallization between an exemplar mantle-derived melt at 1000 Ma and the residual granulites. The extreme peak metamorphic temperature and P-T evolution suggest extended lithosphere that relaxed thermally to its former thickness during slow cooling. We postulate that the spatial variation in mantle input to the granites was related to changing feedback between the rates of extension and flux of mantle melt.

    Related items

    Showing items related by title, author, creator and subject.

    • Sources and conditions for the formation of Jurassic post-orogenic high-K granites in the Western Guangdong Province, SE China
      Huang, Hui-Qing (2012)
      High-K granites have become volumetrically important since at least Proterozoic. Their study bears important implications to crustal and tectonic evolutions. Despite of intensive research, sources and conditions for the ...
    • Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off
      Dan, W.; Li, X.; Wang, Q.; Wang, Xuan-Ce; Liu, Y.; Wyman, D. (2014)
      S-type granites, typically derived from the rapid recycling of sedimentary rocks, are sometimes accompanied by contemporary mafic magmatism and granulite metamorphism. However, the geodynamic context for such rock suites ...
    • Geochronology of the central Tanzania Craton and its southern and eastern orogenic margins
      Thomas, R.; Spencer, Christopher; Bushi, A.; Baglow, N.; Boniface, N.; de Kock, G.; Horstwood, M.; Hollick, L.; Jacobs, J.; Kajara, S.; Kamihanda, G.; Key, R.; Maganga, Z.; Mbawala, F.; McCourt, W.; Momburi, P.; Moses, F.; Mruma, A.; Myambilwa, Y.; Roberts, N.; Saidi, H.; Nyanda, P.; Nyoka, K.; Millar, I. (2016)
      Geological mapping and zircon U-Pb/Hf isotope data from 35 samples from the central Tanzania Craton and surrounding orogenic belts to the south and east allow a revised model of Precambrian crustal evolution of this part ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.