Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Beyond potentiometry: Robust electrochemical ion sensor concepts in view of remote chemical sensing

    20851_downloaded_stream_307.pdf (68.52Kb)
    Access Status
    Open access
    Authors
    Bakker, Eric
    Bhakthavatsalam, V.
    Gemene, K.
    Date
    2008
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bakker, Eric and Bhakthavatsalam, Vishnupriya and Gemene, Kebede L.. 2008. Beyond potentiometry: Robust electrochemical ion sensor concepts in view of remote chemical sensing. Talanta 75 (5): 629-635.
    Source Title
    Talanta
    DOI
    10.1016/j.talanta.2007.10.021
    Faculty
    Nanochemistry Research Centre
    School
    Nanochemistry Research Institute (Research Institute)
    Remarks

    Bakker, Eric and Bhakthavatsalam, Vishnupriya and Gemene, Kebede L. (2008) Beyond potentiometry: Robust electrochemical ion sensor concepts in view of remote chemical sensing, Talanta 75(5):629-635.

    The link to this article is:

    http://dx.doi.org/10.1016/j.talanta.2007.10.021

    Copyright 2008 Elsevier B.V. All rights reserved

    URI
    http://hdl.handle.net/20.500.11937/37459
    Collection
    • Curtin Research Publications
    Abstract

    For about 100 years, potentiometry with ion-selective electrodes has been one of the dominating electroanalytical techniques. While great advances in terms of selective chemistries and materials have been achieved in recent years, the basic manner in which ion-selective membranes are used has not fundamentally changed. The potential readings are directly co-dependent on the potential at the reference electrode, which requires maintenance and for which very few accepted alternatives have been proposed. Fouling or clogging of the exposed electrode surfaces will lead to changes in the observed potential. At the same time, the Nernst equation predicts quite small potential changes, on the order of millivolts for concentration changes on the order of a factor two, making frequent recalibration, accurate temperature control and electrode maintenance keyrequirements of routine analytical measurements. While the relatively advanced selective materials developed for ion-selective sensors would be highly attractive for low power remote sensing application, one should consider solutions beyond classical potentiometry to make this technology practically feasible. This paper evaluates some recent examples that may be attractive solutions to the stated problems that face potentiometric measurements. These include high-amplitude sensing approaches, with sensitivities that are an order of magnitude larger than predicted by the Nernst equation; backside calibration potentiometry, where knowledge of the magnitude of the potential is irrelevant and the system is evaluated from the backside of the membrane; controlled current coulometry with ion-selective membranes, an attractive technique for calibration-free reagent delivery without the need for standards or volumetry; localized electrochemical titrations at ion-selective membranes, making it possible to design sensors that directly monitor parameters such as total acidity for which volumetric techniques were traditionally used; and controlled potential coulometry, where all ions of interest are selectively transferred into the ion-selective organic phase, forming a calibration-free technique that would be exquisitely suitable for remote sensing applications.

    Related items

    Showing items related by title, author, creator and subject.

    • Sensitivity and Working Range of Backside Calibration Potentiometry
      Ngeontae, W.; Xu, Y.; Xu, C.; Aeungmaitrepirom, W.; Tuntulani, T.; Pretsch, E.; Bakker, Eric (2007)
      A new direction in potentiometric sensing, termed backside calibration potentiometry, was recently introduced. It makes use of the fact that the stir effect disappears in the absence of an ion-ionophore complex concentration ...
    • Ferrocene Bound Poly(vinyl chloride) as Ion to Electron Transducer in Electrochemical Ion Sensors
      Pawlak, Marcin; Grygolowicz-Pawlak, Ewa; Bakker, Eric (2010)
      We report here on the synthesis of poly(vinyl chloride) (PVC) covalently modified with ferrocene groups (FcPVC) and the electrochemical behavior of the resulting polymeric membranes in view of designing all solid state ...
    • Thin Layer Coulometry with Ionophore Based Ion-Selective Membranes
      Grygolowicz-Pawlak, Ewa; Bakker, Eric (2010)
      We are demonstrating here for the first time a thin layer coulometric detection mode for ionophore based liquid ion-selective membranes. Coulometry promises to achieve the design of robust, calibration free sensors that ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.