Robust face recognition by utilizing colour information and sparse representation
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In this paper, we consider the problem of robust face recognition using color information. In this context, sparse representation-based algorithms are the state-of-the-art solutions for gray facial images. We will integrate the existing sparse representation-based algorithms with color information and this integration can improve the previous performances significantly. Furthermore, we propose a new performance metric, namely the discriminativeness (DIS) to describe the recognition effectiveness for sparse representation algorithms. We find out that the richer information in color space can be used to increase the DIS, i.e. enhancing the robustness in face recognition. Extensive experiments have been conducted under different conditions, including various feature extractors, random pixel corruptions and occlusions on AR and GT databases, to demonstrate the advantages of using color information in robust face recognition. Detailed analysis is also included for each experiment to explain why and how color improve the robustness of different sparse representation-based methods.
Related items
Showing items related by title, author, creator and subject.
-
Li, Billy Y.L. (2013)One of the most important advantages of automatic human face recognition is its nonintrusiveness property. Face images can sometime be acquired without user's knowledge or explicit cooperation. However, face images acquired ...
-
Zhang, X.; Pham, DucSon; Venkatesh, S.; Liu, Wan-Quan; Phung, D. (2015)Face recognition with multiple views is a challenging research problem. Most of the existing works have focused on extracting shared information among multiple views to improve recognition. However, when the pose variation ...
-
Alrjebi, M.; Pathirage, N.; Liu, Wan-Quan; Li, L. (2017)In this paper, we propose a new method to tackle the problem of face recognition with occlusions via effectively using colour information. As most of current existing approaches for this problem focus on occlusion detection ...