Significance of compressional tectonic on pore pressure distribution in Perth Basin
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
NOTICE: this is the author’s version of a work that was accepted for publication in the Journal of Unconventional Oil and Gas Resources. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in the Journal of Unconventional Oil and Gas Resources, Vol.7, (2014). DOI: 10.1016/j.juogr.2014.01.001
Collection
Abstract
The Perth Basin is one of the major tectonic structures along the western continental margin of Australia and was initially formed through the rifting and break-up of the Indian and Australian plates. The severe tectonic movements accompanied and occurred after the break-up are responsible for the most structural elements and for the distribution of pore pressure in the basin. Investigations on the well log data from the Perth Basin have identified shale intervals which are characterised as overpressured in some parts of the basin, whereas similar shale intervals found to be normally pressured in other parts of the basin. The phenomena of overpressure have frequently been reported while drilling the same intervals. Based on this research, sections with overpressure were observed in the majority of the wells in the basal section of the Kockatea shale where there were less tectonic activities have been recorded. Normal pore pressure was observed in shallower wells in the Kockatea shales which were located within uplifted sections that were more tectonically active areas. Based on the results of this research, the pore pressure distribution in the Kockatea Shale varied significantly from one part of the Perth Basin to another as a result of compressive tectonic stress. Compressional tectonic activities either induced fracturing in shallower localities (e.g. Beagle Ridge, Cadda Terrace and the adjacent terraces) or removed part of the Kockatea Shale as a result of faulting resulting in overpressures being released. Regions with less intensity of the tectonic activities showed an increase in pressure gradients as approaching away from the centre of uplift.
Related items
Showing items related by title, author, creator and subject.
-
Ahmad, A.; Rezaee, M. Reza (2015)Pore pressure in any sedimentary formation is defined as the pressure of the fluid contained in the pore space of the rocks, and can be either normal or abnormal pressure. Abnormal pressure is sub-classified into abnormal ...
-
He, Sheng (2002)The Northern Carnarvon Basin is the richest petroleum province in Australia. About 50 gas/condensate and oil fields, associated mainly with Jurassic source rocks, have been discovered in the sub-basins and on the Rankin ...
-
Al Hinai, Adnan; Rezaee, M. Reza; Esteban, L.; Labani, Mohammad Mahdi (2014)Pore structure of shale samples from Triassic Kockatea and Permian Carynginia formations in the Northern Perth Basin, Western Australia is characterized. Transport properties of a porous media are regulated by the topology ...