Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modelling and experimental study of SO2 removal and NH3 recycling in an ammonia based CO2 capture process

    231932_231932.pdf (402.7Kb)
    Access Status
    Open access
    Authors
    Li, K.
    Yu, H.
    Feron, P.
    Tade, Moses
    Date
    2014
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Li, K. and Yu, H. and Feron, P. and Tade, M. 2014. Modelling and experimental study of SO2 removal and NH3 recycling in an ammonia based CO2 capture process. Energy Procedia. 63: pp. 1162-1170.
    Source Title
    Energy Procedia
    DOI
    10.1016/j.egypro.2014.11.126
    ISSN
    1876-6102
    Faculty
    Faculty of Science and Engineering
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc-nd/4.0/

    URI
    http://hdl.handle.net/20.500.11937/37725
    Collection
    • Curtin Research Publications
    Abstract

    The high NH3 loss to the gas stream (NH3 slip) is one of the major issues in the ammonia based CO2 capture technology. Meanwhile, the removal of sulphur dioxide pollutant (SO2) from flue gas is a prerequisite for many CO2 capture processes. Flue gas desulphurization (FGD) is not installed in Australian power plants and significant capital/investment costs are required to install FGD. In this study, we proposed an advanced process configuration to combine SO2 removal and NH3 recycling in one process development and solve these two problems together. A rate-based model for the system of NH3-CO2-SO2-H2O was established and employed to simulate the process flow sheet. The temperature, pH and N/S ratio profile, SO2 removal and NH3 recycling efficiency along the column were analysed. Experimental work using a bubble column was carried out to provide an initial test on the technical feasibility of the SO2 and NH3 absorption process. Both the modelling and experimental results suggest that the proposed process results in excellent removal and recovery of SO2 and NH3.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Effect of iron corrosion on the fate of dosed copper to inhibit nitrification in chloraminated water distribution system
      Zhan, Weixi (2011)
      Nitrification has been acknowledged as one of the major barriers towards efficient chloramination in water supply distribution systems. Many water utilities employing monochloramine as the final disinfectant have been ...
    • Simultaneous extraction of hydrocarbons and heavy metals from contaminated soils.
      Han, Xu (2000)
      Soil Washing is a promising alternative treatment method for contaminated site remediation. An industry contaminated site - the OMEX site was selected for the study, and several extraction additives (chelating agent and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.