Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China

    Access Status
    Fulltext not available
    Authors
    Barbetti, M.
    Banga, S.
    Fu, T.
    Li, Y.
    Singh, D.
    Liu, S.
    Ge, Cynthia
    Banga, S.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Barbetti, M. and Banga, S. and Fu, T. and Li, Y. and Singh, D. and Liu, S. and Ge, C. et al. 2014. Comparative genotype reactions to Sclerotinia sclerotiorum within breeding populations of Brassica napus and B. juncea from India and China. Euphytica. 197: pp. 47-59.
    Source Title
    Euphytica
    DOI
    10.1007/s10681-013-1049-1
    ISSN
    1573-5060
    URI
    http://hdl.handle.net/20.500.11937/37749
    Collection
    • Curtin Research Publications
    Abstract

    Twenty Brassica breeding populations derived from mass selection or inter-specific hybridization were field screened for resistance to three separate isolates of Sclerotinia sclerotiorum, the cause of Sclerotinia stem rot (SSR). Variation due to S. sclerotiorum isolates (P ≤ 0.001) and host populations (P ≤ 0.001) were highly significant. Populations × isolate interactions were also significant. S. sclerotiorum isolates, MBRS1 and MBRS5 were the most pathogenic and almost similar in terms of population reactions, with WW3 clearly being distinct and having a much smaller range in lesion length across the populations. There were wide ranging and variable responses in terms of resistance against S. sclerotiorum in Brassica napus and B. juncea, with or without B. carinata introgression, among these breeding populations. In B napus, ZY006 (resistant check) and Line6 (HZAU) were the most resistant, closely followed by Line1 (HZAU), OCRI-3 and Line5 (HZAU). Line6 (HZAU) showed excellent resistance against the highly virulent isolates MBRS1 and MBRS5; while OCRI-1 appeared most resistant against isolate WW3. The B. juncea × B. carinata hybrid JC134 (PAU) was the most resistant against isolate MBRS5 and B. juncea RH9902 × JN026 the most resistant against isolate MBRS1. B. napus lines Line2 (HZAU), Line4 (HZAU), OCRI-3; and OCRI-4, and the B. napus × B. carinata hybrid Surpass4000 NCB4 (PAU), showed a significant degree of isolate-dependency in their reactions.In contrast, some other genotypes such as B. napus lines Line1 (HZAU), OCRI-5; Ding 110× Oscar and, particularly, Line5 (HZAU), were largely isolate-independent, making them ideal sources of resistance to target and exploit in developing new commercial cultivars with more effective resistance to SSR across multiple pathotypes of this pathogen. Cluster analysis allowed categorization of the test populations into five groups, based on their resistant responses. B. napus ZY006 was the sole genotype in the most resistant group. B. napus lines Line6 (HZAU), Ding 110 × Oscar (HAU) and Line4 (HZAU) clustered in another genetically distinct resistant group. That lines could be grouped into those with similar responses across the three different isolates of S. sclerotiorum will save breeders much time and expense by eliminating duplication of breeding efforts that occurs from using genotypes that are essentially similar in terms of host resistance against this serious pathogen. Further, that populations of similar levels of resistance but narrow variation in the resistance range could be identified is significant, as these are most likely to reliably provide breeders with advanced populations that not only consistently display the level of resistance expected but also reflect genetic diversity of resistance sources needed to successfully develop new more-resistant commercial varieties.

    Related items

    Showing items related by title, author, creator and subject.

    • Delineation of Sclerotinia sclerotiorum pathotypes using differential resistance responses on Brassica napus and B. juncea genotypes enables identification of resistance to prevailing pathotypes
      Ge, Cynthia; Li, Y.; Wan, Z.; You, M.; Finnegan, P.; Banga, S.; Sandhu, P.; Garg, H.; Salisbury, P.; Barbetti, M. (2012)
      Sclerotinia stem rot caused by the fungus Sclerotinia sclerotiorum is one of the most damaging and difficultto-manage diseases of oilseed rape (Brassica napus) and mustard (B. juncea). Identifying oilseed Brassicagenotypes ...
    • Virulence differences among Sclerotinia sclerotiorum isolates determines host cotyledon resistance responses in Brassicaceae genotypes
      Ge, Cynthia; You, M.; Barbetti, M. (2015)
      Differences in Sclerotinia rot (SR) disease severity, caused by two categorized pathotypes and one more recent isolate of S. sclerotiorum and measured in terms of cotyledon lesion diameter, were studied across diverse ...
    • Partial stem resistance in Brassica napus to highly aggressive and genetically diverse Sclerotinia sclerotiorum isolates from Australia
      Denton-Giles, Matthew; Derbyshire, Mark; Khentry, Y.; Buchwaldt, L.; Kamphuis, Lars (2018)
      Sclerotinia sclerotiorum is a fungal pathogen that causes stem rot in oilseed rape (Brassica napus). Previously, B. napus accessions with partial stem resistance to a Canadian S. sclerotiorum isolate (#321) were identified ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.