Developmental gene expression in the mouse clarifies the organisation of the claustrum and related endopiriform nuclei
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
Faculty
Collection
Abstract
Studies on gene expression in the developing claustrum of the mouse have clarified the relationships and identity of the claustrum proper and related endopiriform nuclei. The cells of the claustrum primordium express Nr4a2; they are formed in combination with the Nr4a2-labeled subplate cells in the lateral pallium at the site of the future insular cortex. The insular cortex cells, which are born later and which are Nr4a2-negative, migrate through the claustrum toward the pial surface to form layers (2–6a) of the insular cortex. The claustrum is made up of distinct deep (subplate-like) and superficial (principal) parts. The cells of the dorsal endopiriform nucleus (which are also Nr4a2-positive) are formed in the deep part of the claustrum primordium in the lateral pallium, but they migrate ventrally to reach the ventral pallium deep to the piriform cortex at E14.5 in the mouse. On the other hand, the ventral endopiriform nucleus is formed by radially migrating Nr4a2-negative cells in the ventral pallium; it is therefore developmentally distinct from the Nr4a2-postive dorsal endopiriform nucleus, which is a lateral pallial derivative.
Related items
Showing items related by title, author, creator and subject.
-
Herculano-Houzel, S.; Watson, Charles; Paxinos, G. (2013)How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex ...
-
Liang, H.; Wang, S.; Francis, R.; Whan, R.; Watson, Charles; Paxinos, G. (2015)Background: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non- serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the ...
-
Liang, H.; Wang, S.; Francis, R.; Whan, R.; Watson, Charles; Paxinos, G. (2015)Background: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non-serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the ...