Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The influence of fallback discs on the spectral and timing properties of neutron stars

    219010_68357_70400_publishedversion.pdf (804.1Kb)
    Access Status
    Open access
    Authors
    Yan, T.
    Perna, R.
    Soria, Roberto
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yan, T. and Perna, R. and Soria, R. 2012. The influence of fallback discs on the spectral and timing properties of neutron stars. Monthly Notices of the Royal Astronomical Society. 423: pp. 2451-2463.
    Source Title
    Monthly Notices of the Royal Astronomical Society
    DOI
    10.1111/j.1365-2966.2012.21051.x
    ISSN
    1365-2966
    School
    Curtin Institute of Radio Astronomy (Physics)
    Remarks

    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, ©: 2012, the authors and the Royal Astronomical Society. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

    URI
    http://hdl.handle.net/20.500.11937/38179
    Collection
    • Curtin Research Publications
    Abstract

    Fallback discs around neutron stars (NSs) are believed to be an expected outcome of supernova explosions. Here we investigate the consequences of such a common outcome for the timing and spectral properties of the associated NS population, using Monte Carlo population synthesis models. We find that the long-term torque exerted by the fallback disc can substantially influence the late-time period distribution, but with quantitative differences which depend on whether the initial spin distribution is dominated by slow or fast pulsars. For the latter, a single-peaked initial spin distribution becomes bimodal at later times. Timing ages tend to underestimate the real age of older pulsars, and overestimate the age of younger ones. Braking indices cluster in the range 1.5 ˂ ~n ˂ ~3 for slow-born pulsars, and −0.5 ˂ ~n ˂ ~5 for fast-born pulsars, with the younger objects found predominantly below n ˂ ~ 3. Large values of n, while not common, are possible, and associated with torque transitions in the NS+disc system. The 0.1–10 keV thermal luminosity of the NS+disc system is found to be generally dominated by the disc emission at early times, Graphic yr, but this declines faster than the thermal surface emission of the NS. Depending on the initial parameters, there can be occasional periods in which some NSs switch from the propeller to the accretion phase, increasing their luminosity up to the Eddington limit for ∼103–104 years.

    Related items

    Showing items related by title, author, creator and subject.

    • The High Time Resolution Universe Pulsar Survey - VII. Discovery of five millisecond pulsars and the different luminosity properties of binary and isolated recycled pulsars
      Burgay, M.; Bailes, M.; Bates, S.; Bhat, Ramesh; Burke-Spolaor, S.; Champion, D.; Coster, P.; D'Amico, N.; johnston, S.; Keith, M.; Kramer, M.; levin, L.; Lyne, A.; Milia, S.; Ng, C.; Possenti, A.; Stappers, B.; Thornton, D.; Tiburzi, C.; van Straten, W.; Bassa, C. (2013)
      This paper presents the discovery and timing parameters for five millisecond pulsars (MSPs), four in binary systems with probable white dwarf companions and one isolated, found in ongoing processing of the High Time ...
    • The kinematics and orbital dynamics of the PSR B1259-63/LS 2883 system from 23 yr of pulsar timing
      Shannon, Ryan; Johnston, S.; Manchester, R. (2014)
      We present an analysis of 23 yr of pulse arrival times for PSR B1259−63. The pulsar is in a binary orbit about its approximately 20 M⊙ companion LS 2883. Our best-fitting timing solution has none of the pulse-number ...
    • MeerTime - the MeerKAT Key science program on pulsar timing
      Bailes, M.; Barr, E.; Bhat, Ramesh; Brink, J.; Buchner, S.; Burgay, M.; Camilo, F.; Champion, D.; Hessels, J.; Jansseng, G.; Jameson, A.; Johnston, S.; Karastergiou, A.; Karuppusamy, R.; Kaspi, V.; Keith, M.; Kramer, M.; McLaughlin, M.; Moodley, K.; Oslowski, S.; Possenti, A.; Ransom, S.; Rasio, F.; Sievers, J.; Serylak, M.; Stappers, B.; Stairs, I.; Theureau, G.; van Straten, W.; Weltevrede, P.; Wex, N. (2016)
      © Copyright owned by the author(s). The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.