Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Sensing via Voltammetric Ion-Transfer at an Aqueous-Organogel Micro-Interface Array

    Access Status
    Fulltext not available
    Authors
    Herzog, G.
    O'Sullivan, S.
    Ellis, J.
    Arrigan, Damien
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Herzog, Gregoire and O'Sullivan, Shane and Ellis, Jonathan and Arrigan, Damien W.M. 2011. Sensing via Voltammetric Ion-Transfer at an Aqueous-Organogel Micro-Interface Array. Sensor Letters. 9 (2): pp. 721-724.
    Source Title
    Sensor Letters
    DOI
    10.1166/sl.2011.1601
    ISSN
    1546-198X
    School
    Department of Applied Chemistry
    URI
    http://hdl.handle.net/20.500.11937/38289
    Collection
    • Curtin Research Publications
    Abstract

    Ion-transfer across micro-interfaces between aqueous electrolyte and gellified organic electrolyte phases formed at micropores in a micromachined silicon membrane was studied. The membrane used had 30 pores of ca. 11 μm radius, with pore-pore separation of ca. 20-times the radius. Near-steady-state voltammetry was obtained on the forward (aqueous to organogel transfer) sweep and peak-shaped voltammetry on the reverse (organogel to aqueous transfer) sweep, consistent with the dominance of radial diffusion and linear diffusion transport processes during the forward and reverse sweeps, respectively. Computational simulation of voltammetry also produced these responses. Differential pulse stripping voltammetry at these micro-interface arrays showed that the stripping current saturated at a preconcetration time of 30 s, attributed to the rapid diffusion from the aqueous phase to the micro-interfaces and the slow diffusion within the organic phase. The results provide the basis for chemical or biochemical sensing based on ion-transfer voltammetry at micro-interface arrays formed at micromachined membranes.

    Related items

    Showing items related by title, author, creator and subject.

    • Voltammetric behaviour of biological macromolecules at arrays of aqueous|organogel micro-interfaces
      Scanlon, M.; Strutwolf, J.; Arrigan, Damien (2010)
      The behaviour of two biological macromolecules, bovine pancreatic insulin and hen-egg-whitelysozyme (HEWL), at aqueous-organogel interfaces confined within an array of solid-state membrane micropores was investigated via ...
    • Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays – simulations and experiments
      Strutwolf, J.; Scanlon, M.; Arrigan, Damien (2009)
      Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemicalmethods. In this work, microporous silicon membranes which can be used for interface miniaturisationwere characterized ...
    • Electrochemical detection of dopamine using arrays of liquid–liquid micro-interfaces created withinmicromachined silicon membranes
      Berduque, A.; Zazpe, R.l; Arrigan, Damien (2008)
      The detection of protonated dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at arrays of micro-interfaces between two immiscible electrolyte solutions (ITIES) is presented. Microfabricated ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.