Stacked Face De-Noising Auto Encoders for Expression-Robust Face Recognition
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
Recent advancement in unsupervised and transfer learning methods of deep learning networks has seen a complete paradigm shift in machine learning. Inspired by the recent evolution of deep learning (DL) networks that demonstrates a proven pathway of addressing challenging dilemmas in various problem domains, we propose a novel DL framework for expression-robust feature acquisition. The framework exploits the contributions of different colour components in different local face regions by recovering the neutral expression from various expressions. Furthermore, the framework rigorously de-noises a face with dynamic expressions in a progressive way thus it is termed as stacked face de-noising auto-encoders (SFDAE). The high-level expression-robust representations that are learnt via this framework will not only yield better reconstruction of neutral expression faces but also boost the performance of the subsequent LDA[1] classifier. The experimental results reveal the superiority of the proposed method to the existing works in terms of its generalization ability and the high recognition accuracy.
Related items
Showing items related by title, author, creator and subject.
-
Li, Billy Y.L. (2013)One of the most important advantages of automatic human face recognition is its nonintrusiveness property. Face images can sometime be acquired without user's knowledge or explicit cooperation. However, face images acquired ...
-
Scott, Donald E. (2009)This study was a 360 degree exploration of the effectiveness of online learning experiences facilitated via Voice-over-Internet-Protocol (VoIP) by incorporating the insights afforded by students, their lecturers, and the ...
-
Alansari, Widad Musleh (2010)This study investigated the influence of using concept mapping as a teaching and learning tool on Saudi Pre-Service teachers' knowledge of teaching social studies. It also investigated Saudi Pre-Service teachers' perceptions ...