Self-assembled CeO2 on carbon nanotubes supported Au nanoclusters as superior electrocatalysts for glycerol oxidation reaction of fuel cells
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2015 Elsevier Ltd. All rights reserved. One of the critical challenges in energy conversion using fuel cells is the development of non-Pt based electrocatalysts with high activity and stability. Herein, CeO2 nanoclusters of 1.5 nm supported on 1-pyrenecarboxylic acid (PC) functionalized multi-walled carbon nanotubes (PC-MWNTs) were synthesized via sequential polyelectrolyte functionalization and microwave-assisted self-assembly, and subsequently used as a support of gold (Au) NPs for glycerol oxidation reaction. The hybrid Au/CeO2/PC-MWNT electrocatalyst shows excellent activity and durability, achieving a peak current density 28 times that of the commercial Pt/C catalyst; at a practical fuel cell operation potential of -0.3 V vs. SCE, it exhibits a current density 1.6 times that of Pt/C. In addition, after polarization at -0.3 V vs. SCE for 1800s, the current density is 2.5 times that of Pt/C. This is probably the first report of a higher catalytic performance of Au-based catalysts than that of the commercial Pt/C catalysts at practical fuel cell operation potentials. The work not only provides an economical and facile strategy to synthesize oxide-based nanoclusters (NP size < 2 nm) as a support of Au-based electrocatalysis, but also offers a superior electrocatalyst to replace Pt-based ones for glycerol oxidation reaction in glycerol fuel-based direct alcohol fuel cells.
Related items
Showing items related by title, author, creator and subject.
-
Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)© 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
-
Qu, J.; Wang, Wei; Chen, Y.; Wang, F.; Ran, Ran; Shao, Zongping (2015)In this study, renewable ethylene glycol (EG) was exploited as a potential fuel for solid oxide fuel cells (SOFCs) with conventional nickel yttria-stabilized zirconia (Ni–YSZ) cermet anodes for sustainable electric power ...
-
Zhang, J.; Jiang, San Ping (2016)Fuel cell is the most efficient and environmentally friendly energy conversion technology to directly convert the chemical energy of fuels such as hydrogen, methane, methanol, ethanol and hydrocarbons into electricity ...