Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Flower-like Cobalt Hydroxide/Oxide on Graphitic Carbon Nitride for Visible-Light-Driven Water Oxidation

    Access Status
    Fulltext not available
    Authors
    Zhang, H.
    Tian, W.
    Guo, X.
    Zhou, L.
    Sun, Hongqi
    Tadé, M.
    Wang, S.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, H. and Tian, W. and Guo, X. and Zhou, L. and Sun, H. and Tadé, M. and Wang, S. 2016. Flower-like Cobalt Hydroxide/Oxide on Graphitic Carbon Nitride for Visible-Light-Driven Water Oxidation. ACS Applied Materials and Interfaces. 8 (51): pp. 35203-35212.
    Source Title
    ACS Applied Materials and Interfaces
    DOI
    10.1021/acsami.6b10918
    ISSN
    1944-8244
    School
    Department of Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/38572
    Collection
    • Curtin Research Publications
    Abstract

    Direct water oxidation via photocatalysis is a four-electron and multiple-proton process which requires high extra energy input to produce free dioxygen gas, making it exacting, especially under visible light irradiation. To improve the oxygen evolution reaction rates (OERs) and utilize more visible light, flower-like cobalt hydroxide/oxide (Fw-Co(OH)2/Fw-Co3O4) photocatalysts were prepared and loaded onto graphitic carbon nitride (g-C3N4) by a facile coating method in this work. Influenced by the unique three-dimensional morphologies, the synthesized Fw-Co(OH)2 or Fw-Co3O4/g-C3N4 hybrids reveal favorable combination and synergism reflected by the modified photoelectric activities and the improved OER performances. Attributed to its prominent hydrotalcite structure, Fw-Co(OH)2 shows better cocatalytic activity for g-C3N4 modification compared with that of Fw-Co3O4. Specifically, 7 wt % Fw-Co(OH)2/g-C3N4 photocatalyst exhibits photocurrent density 4 times higher and OER performance 5 times better than pristine g-C3N4. This work unambiguously promotes the application of sustainable g-C3N4 in water oxidation.

    Related items

    Showing items related by title, author, creator and subject.

    • Catalytic partial oxidation of propylene to acrolein: the catalyst structure, reaction mechanisms and kinetics
      Fansuri, Hamzah (2005)
      Bismuth molybdates have long been known as active catalysts for selective oxidation of olefins. There are several phases of bismuth molybdates but only three of them are known to be active for partial oxidation of propylene ...
    • Combined adsorption and oxidation technique for waste water treatment: potential application in permeable reactive barrier
      Shukla, Pradeep (2010)
      This dissertation explores a combined adsorption and advanced oxidation technology for trapping and destruction of organic pollutants in waste water. The adsorbed/immobilized pollutant onto the surface of metal supported ...
    • Studies of the saturate and aromatic hydrocarbon unresolved complex mixtures in petroleum
      Warton, Benjamin (1999)
      This thesis reports the results of investigations carried out into the composition of the saturate and aromatic unresolved complex mixtures (UCMs) in crude oils. It is divided into two sections. Section A reports on studies ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.