Input parameters selection for soil moisture retrieval using an artificial neural network
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
Faculty
Remarks
Published by Surveying & Spatial Sciences Institute (SSSI)
Collection
Abstract
Factors other than soil moisture which influence the intensity of microwave emission from the soil include surface temperature, surface roughness, vegetation cover and soil texture which make this a non-linear and ill-posed problem. Artificial Neural Networks (ANNs) have been demonstrated to be good solutions to this type of problem. Since an ANN is a data driven model, proper input selection is a crucial step in its implementation as the presence of redundant or unnecessary inputs can severely impair the ability of the network to learn the target patterns. In this paper, the input parameters are chosen in combination with the brightness temperatures and are based on the use of incremental contributions of the variables towards soil moisture retrieval. Field experiment data obtained during the National Airborne Field Experiment 2005 (NAFE'05) are used. The retrieval accuracy with the input parameters selected is compared with the use of only brightness temperature as input and the use of brightness temperature in conjunction with a range of available parameters. Note that this research does not aim at selecting the best features for all ANN soil moisture retrieval problems using passive microwave. The paper shows that, depending on the problem and the nature of the data, some of the data available are redundant as the input of ANN for soil moisture retrieval. Importantly the results show that with the appropriate choice of inputs, the soil moisture retrieval accuracy of ANN can be significantly improved.
Related items
Showing items related by title, author, creator and subject.
-
Chai, Soo See; Walker, J.; Makarynskyy, Oleg; Kuhn, Michael; Veenendaal, Bert; West, Geoffrey (2010)Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is ...
-
Chai, Soo See (2010)Soil moisture is a key variable that defines land surface-atmosphere (boundary layer) interactions, by contributing directly to the surface energy and water balance. Soil moisture values derived from remote sensing platforms ...
-
Chai, S.; Veenendaal, Bert; West, Geoff; Walker, J. (2008)Soil moisture is an important variable that controls the partition of rainfall into infiltration and run-off. This plays an important role in the prediction of erosion, flood or drought. Passive microwave remote sensing ...