Show simple item record

dc.contributor.authorHumphries, Terry
dc.contributor.authorSheppard, D.
dc.contributor.authorRowles, Matthew
dc.contributor.authorSofianos, M. Veronica
dc.contributor.authorBuckley, Craig
dc.date.accessioned2017-01-30T14:24:14Z
dc.date.available2017-01-30T14:24:14Z
dc.date.created2016-08-18T19:30:20Z
dc.date.issued2016
dc.identifier.citationHumphries, T. and Sheppard, D. and Rowles, M. and Sofianos, M. and Buckley, C. 2016. Fluoride substitution in sodium hydride for thermal energy storage applications. Journal of Materials Chemistry A. 4 (31): pp. 12170-12178.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/38652
dc.identifier.doi10.1039/c6ta03623f
dc.description.abstract

The solid-state solutions of NaHxF1-x (x = 1, 0.95, 0.85, 0.5) have been investigated to determine their potential for thermal energy applications. Thermal analyses of these materials have determined that an increase in fluorine content increases the temperature of hydrogen release, with a maximum rate of desorption at 443 °C for NaH0.5F0.5 compared to 408 °C for pure NaH, while pressure-composition-isotherm measurements have established a ΔHdes of 106 ± 5 kJ mol-1 H2 and ΔSdes of 143 ± 5 J K-1 mol-1 H2, compared to 117 kJ mol-1 H2 and 167 J K-1 mol-1 H2, respectively, for pure NaH. While fluorine substitution actually leads to a decrease in the stability (enthalpy) compared to pure NaH, it has a larger depressing effect on the entropy that leads to reduced hydrogen equilibrium pressures. In situ powder X-ray diffraction studies have ascertained that decomposition occurs via enrichment of fluorine in the NaHxF1-x composites while, unlike pure NaH, rehydrogenation is easily achievable under mild pressures. Further, cycling studies have proven that the material is stable over at least seven hydrogen sorption cycles, with only a slight decrease in capacity while operating between 470 and 520 °C. Theoretically, these materials may operate between 470 and 775 °C and, as such, show great potential as thermal energy storage materials for concentrating solar thermal power applications.

dc.publisherR S C Publications
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP150100730
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LP120101848
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE0989180
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/LE0775551
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleFluoride substitution in sodium hydride for thermal energy storage applications
dc.typeJournal Article
dcterms.source.volume4
dcterms.source.number31
dcterms.source.startPage12170
dcterms.source.endPage12178
dcterms.source.issn2050-7488
dcterms.source.titleJournal of Materials Chemistry A
curtin.departmentDepartment of Physics and Astronomy
curtin.accessStatusOpen access
curtin.contributor.orcidHumphries, Terry [0000-0003-1015-4495]
curtin.contributor.orcidSofianos, M. Veronica [0000-0002-9654-1463]
curtin.contributor.orcidRowles, Matthew [0000-0002-7448-6774]
curtin.contributor.orcidBuckley, Craig [0000-0002-3075-1863]


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/4.0/