Show simple item record

dc.contributor.authorZhou, Guanglu
dc.contributor.authorQi, Liqun
dc.contributor.authorWu, Soon-Yi
dc.date.accessioned2017-01-30T14:25:51Z
dc.date.available2017-01-30T14:25:51Z
dc.date.created2014-03-09T20:00:41Z
dc.date.issued2013
dc.identifier.citationZhou, Guanglu and Qi, Liqun and Wu, Soon-Yi. 2013. Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. Frontiers of Mathematics in China. 8 (1): pp. 155-168.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/38761
dc.identifier.doi10.1007/s11464-012-0268-4
dc.description.abstract

Consider the problem of computing the largest eigenvalue for nonnegative tensors. In this paper, we establish the Q-linear convergence of a power type algorithm for this problem under a weak irreducibility condition. Moreover, we present a convergent algorithm for calculating the largest eigenvalue for any nonnegative tensors.

dc.publisherSpringer
dc.subjectnonnegative tensor
dc.subjectlinear convergence
dc.subjectpower method
dc.subjectEigenvalue
dc.titleEfficient algorithms for computing the largest eigenvalue of a nonnegative tensor
dc.typeJournal Article
dcterms.source.volume8
dcterms.source.number1
dcterms.source.startPage155
dcterms.source.endPage168
dcterms.source.issn1673-3452
dcterms.source.titleFrontiers of Mathematics in China
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record