Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor
dc.contributor.author | Zhou, Guanglu | |
dc.contributor.author | Qi, Liqun | |
dc.contributor.author | Wu, Soon-Yi | |
dc.date.accessioned | 2017-01-30T14:25:51Z | |
dc.date.available | 2017-01-30T14:25:51Z | |
dc.date.created | 2014-03-09T20:00:41Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Zhou, Guanglu and Qi, Liqun and Wu, Soon-Yi. 2013. Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor. Frontiers of Mathematics in China. 8 (1): pp. 155-168. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/38761 | |
dc.identifier.doi | 10.1007/s11464-012-0268-4 | |
dc.description.abstract |
Consider the problem of computing the largest eigenvalue for nonnegative tensors. In this paper, we establish the Q-linear convergence of a power type algorithm for this problem under a weak irreducibility condition. Moreover, we present a convergent algorithm for calculating the largest eigenvalue for any nonnegative tensors. | |
dc.publisher | Springer | |
dc.subject | nonnegative tensor | |
dc.subject | linear convergence | |
dc.subject | power method | |
dc.subject | Eigenvalue | |
dc.title | Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor | |
dc.type | Journal Article | |
dcterms.source.volume | 8 | |
dcterms.source.number | 1 | |
dcterms.source.startPage | 155 | |
dcterms.source.endPage | 168 | |
dcterms.source.issn | 1673-3452 | |
dcterms.source.title | Frontiers of Mathematics in China | |
curtin.department | ||
curtin.accessStatus | Fulltext not available |