Frugal full-waveform inversion: From theory to a practical algorithm
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Remarks
Published by the Society of Exploration Geophysicists.© 2013 Society of Exploration Geophysicists.
A link to the Society's web site is available from the Related Links field.
Collection
Abstract
As conventional oil and gas fields are maturing, our profession is challenged to come up with the next-generation of more and more sophisticated exploration tools. In exploration seismology this trend has let to the emergence of wave-equation-based inversion technologies such as reverse time migration and full-waveform inversion. While significant progress has been made in wave-equation-based inversion, major challenges remain in the development of robust and computationally feasible workflows that give reliable results in geophysically challenging areas that may include ultralow shear-velocity zones or high-velocity salt. Moreover, subsalt production carries risks that need mitigation, which raises the bar from creating subsalt images to inverting for subsalt overpressure.
Related items
Showing items related by title, author, creator and subject.
-
Thong Kieu, D.; Kepic, Anton (2015)Geophysical inversion produces very useful images of earth parameters; however, inversion results usually suffer from inherent non-uniqueness: many subsurface models with different structures and parameters can explain ...
-
Le, C.; Harris, Brett; Pethick, A.; Takam Takougang, Eric; Howe, B. (2016)Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially ...
-
Li, Ruiping (2002)In most cases of seismic processing and interpretation, elastic isotropy is assumed. However, velocity anisotropy is found to exist in most subsurface media. Hence, there exists a fundamental inconsistency between theory ...