Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates

    Access Status
    Fulltext not available
    Authors
    Shi, B.
    Fan, S.
    Lou, Xia
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shi, B. and Fan, S. and Lou, X. 2014. Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates. Chemical Engineering Science. 109: pp. 315-325.
    Source Title
    Chemical Engineering Science
    DOI
    10.1016/j.ces.2014.01.035
    ISSN
    0009-2509
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/38895
    Collection
    • Curtin Research Publications
    Abstract

    Mixed dry-water (DW) droplets and porous hydrogel (HYD) microspheres have been investigated for applications in reversible methane storage in the form of clathrates. The process of the methane hydrates formation in the presence of these particles was found to be complex. In this work, a modified shrinking-core model was used to simulate the process and to extract the diffusivity and the adsorption rate constant of methane based on the experimental data. The results indicated that the formation of methane hydrates in the mixed particulate systems was affected by water molecules from three different sources: the DW droplets, the HYD particles and the free water (FW) present in the system. The extracted value of initial methane diffusivity, Df0,DW (1.35×10−7–0.99×10−7 m2/s) for DW droplets, and Df0,HYD (1.59×10−7–5.24×10−7 m2/s) for HYD particles, are three orders of magnitude greater than that of bulk water (5×10−12 to 5×10−10 m2/s). The adsorption rate constant of methane, K⁎HYD (0.55×10−5–5.81×10−5 mol/m2 s MPa) of HYD particles, and K⁎DW (5.49×10−6–6.05×10−6 mol/m2 s MPa) of DW droplets, also are greater than the reported value of stirred bulk water (5.5×10−6–6.5×10−6 mol/m2 s MPa). The K⁎HYD is 10 times that of K⁎DW when the hydrogel particles are saturated, indicating a favourable design of the scaffold for methane hydrates formation. The results also demonstrated a higher and more stable water conversion yield (90%) in HYD particles, echoing the improved hydrates formation kinetics and better reversibility. The compromised gas capacity in the mixed system was likely due to the presence of a relatively higher volume of FW, which should be prevented in the future design and development of scaffolding materials for clathrates formation.

    Related items

    Showing items related by title, author, creator and subject.

    • Reversible methane storage in porous hydrogel supported clathrates
      Ding, Ailin; Yang, L.; Fan, S.; Lou, Xia (2013)
      Methane gas hydrates are a promising alternative for storage and transport of natural gas. In this paper, porous poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-methacrylic acid) ...
    • An investigation on repeated methane hydrates formation in porous hydrogel particles
      Shi, Bo-Hui; Yang, L.; Fan, S.; Lou, Xia (2017)
      Porous hydrogel particles of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N-isopropylacrylamide) (PNIPAAm) with varying water absorbability and quantities were investigated upon their ability and stability to support ...
    • A network model for capture of suspended particles and droplets in porous media
      Gao, Changhong (2008)
      Produced water presents economical and environmental challenges to oil producers. Downhole separation technology is able to separate oil or gas from produced fluid in downhole environment and injects waste water into ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.