Show simple item record

dc.contributor.authorLing, Bingo
dc.contributor.authorHo, Charlotte
dc.contributor.authorTeo, Kok Lay
dc.contributor.editorA. Chatterjee et al
dc.date.accessioned2017-01-30T10:34:56Z
dc.date.available2017-01-30T10:34:56Z
dc.date.created2014-03-10T20:00:44Z
dc.date.issued2013
dc.identifier.citationLing, Bingo and Ho, Charlotte and Teo, Kok Lay. 2013. Nonconvex Optimization via Joint Norm Relaxed SQP and Filled Function Method with Application to Minimax Two-Channel Linear Phase FIR QMF Bank Design, in Chatterjee, A. and Nobahari, H. and Siarry, P. (ed), Advances in Heuristic Signal Processing and Applications, pp. 1-16. Berlin: Springer-Verlag.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/3901
dc.identifier.doi10.1007/978-3-642-37880-5_1
dc.description.abstract

In this chapter, a two-channel linear phase finite impulse response (FIR) quadrature mirror filter (QMF) bank minimax design problem is formulated as a nonconvex optimization problem so that a weighted sum of the maximum amplitude distortion of the filter bank, the maximum passband ripple magnitude, and the maximum stopband ripple magnitude of the prototype filter is minimized subject to specifications on these performances. A joint norm relaxed sequential quadratic programming and filled function method is proposed for finding the global minimum of the nonconvex optimization problem. Computer numerical simulations show that our proposed design method is efficient and effective.

dc.publisherSpringer-Verlag
dc.titleNonconvex Optimization via Joint Norm Relaxed SQP and Filled Function Method with Application to Minimax Two-Channel Linear Phase FIR QMF Bank Design
dc.typeBook Chapter
dcterms.source.startPage1
dcterms.source.endPage16
dcterms.source.titleAdvances in Heuristic Signal Processing and Applications
dcterms.source.isbn978-3-642-37880-5
dcterms.source.placeBerlin Heidelberg
dcterms.source.chapter1
curtin.department
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record