Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Fluid-structure interactions in the human upper airway — large-displacement biomechanics

    Access Status
    Fulltext not available
    Authors
    Elliott, Novak
    Lucey, Anthony
    Heil, M
    Date
    2010
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Elliott, Novak S. J. and Lucey, Anthony D. and Heil, Matthias. 2010. Fluid-structure interactions in the human upper airway — large-displacement biomechanics, in Teh, K and Davies, I. and Howard, I. (ed), 6th Australasian Congress on Applied Mechanics, ACAM 6, Dec 12-15 2010. Perth, WA: Engineers Australia.
    Source Title
    Proceedings of the 6th Australasian Congress on Applied Mechanics
    Source Conference
    6th Australasian Congress on Applied Mechanics, ACAM 6
    Additional URLs
    http://search.informit.com.au/documentSummary;dn=014901672430446;res=IELENG
    ISBN
    978-0-85825-941-6
    School
    Department of Mechanical Engineering
    URI
    http://hdl.handle.net/20.500.11937/3908
    Collection
    • Curtin Research Publications
    Abstract

    Obstructive breathing disorders, such as sleep apnoea and snoring, interfere with normal respiration and sleep, reducing brain-oxygen saturation and are linked with hypertension and heart failure. The mechanics of the human upper airway are characterised by the interaction of the low-stiffness structures, being the soft palate and throat sidewalls, with the air flow producing soft-tissue vibrations that may lead to airway closure. In order to investigate this dynamical system we employ a cantilevered flexible plate (soft-palate) immersed in a two-dimensional channel (pharynx) flow. For this canonical analogue, we take the next step towards biomechanical realism by modelling finite-amplitude motions of the flexible plate and incorporating finite thickness in its structure. The structural model makes use of a geometrically nonlinear formulation of the solid mechanics. Viscous flow is modelled at Reynolds numbers giving unsteady laminar flow. The fully-coupled fluid-structure interaction (FSI) model is developed using the open-source finite-element library oomph-lib. We begin with a validation study of the structural mechanics through examining the effects of finite amplitude and finite thickness on the in-vacuo modes. Thereafter, we use the FSI model to illustrate both stable and unstable motions of the plate.This paper demonstrates the versatility of the new modelling approach and its suitability for characterising the dependence of the plate’s stability on the system parameters.

    Related items

    Showing items related by title, author, creator and subject.

    • Modelling and simulation of fluid-structure interactions in human snoring
      Elliott, Novak; Lucey, Anthony; Eastwood, P.; Hillman, D.; Heil, M. (2011)
      Snoring noise is generated by vibration of the soft tissues of the upper airway, principally those that form the back of the roof of the mouth (the soft palate) and its conical extension (the uvula). In addition to discord ...
    • Large-Amplitude Oscillations of a Finite-Thickness Cantilevered Flexible Plate in Viscous Channel Flow
      Elliott, Novak; Lucey, Anthony; Heil, M. (2010)
      The broad aim of the present work is to elucidate mechanisms of obstructive breathing disorders (snoring, sleep apnea) in which flow-induced instabilities of the soft palate feature. We use the well-established analogue ...
    • Modelling human upper-airway dynamics and dysfunction
      Tetlow, George A. (2012)
      Repetitive closure of the upper-airway characterises obstructive sleep apnea. It disrupts sleep causing excessive daytime drowsiness, and is linked to hypertension and cardiovascular disease.Previous studies simulating ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.