Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Emerging role of the KRAS-PDK1 axis in pancreatic cancer

    226254_144975_87299_WJG-20-10752.pdf (763.4Kb)
    Access Status
    Open access
    Authors
    Ferro, R.
    Falasca, Marco
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ferro, R. and Falasca, M. 2014. Emerging role of the KRAS-PDK1 axis in pancreatic cancer. World Journal of Gastroenterology. 20 (31): 10752.
    Source Title
    World Journal of Gastroenterology
    DOI
    10.3748/wjg.v20.i31.10752
    ISSN
    1007-9327
    Remarks

    This open access article is distributed under the Creative Commons license http://creativecommons.org/licenses/by-nc/4.0/

    URI
    http://hdl.handle.net/20.500.11937/39211
    Collection
    • Curtin Research Publications
    Abstract

    Pancreatic cancer is a highly aggressive tumour that is very resistant to treatments and it is rarely diagnosed early because of absence of specific symptoms. Therefore, the prognosis for this disease is very poor and it has the grim supremacy in terms of unfavourable survival rates. There have been great advances in survival rates for many types of cancers over the past few decades but hardly any change for pancreatic cancer. Mutations of the Ras oncogene are the most frequent oncogenic alterations in human cancers. The frequency of KRAS mutations in pancreatic cancer is around 90%. Given the well-established role of KRAS in cancer it is not surprising that it is one of the most attractive targets for cancer therapy. Nevertheless, during the last thirty years all attempts to target directly KRAS protein have failed. Therefore, it is crucial to identify downstream KRAS effectors in order to develop specific drugs able to counteract activation of this pathway. Among the different signalling pathways activated by oncogenic KRAS, the phosphoinositide 3-Kinase (PI3K) pathway is emerging as one of the most critical KRAS effector. In turn, PI3K activates several parallel pathways making the identification of the precise effectors activated by KRAS/PI3K more difficult. Recent data identify 3-phosphoinositide-dependent protein kinase 1 as a key tumour-initiating event downstream KRAS interaction with PI3K in pancreatic cancer.

    Related items

    Showing items related by title, author, creator and subject.

    • Targeting phosphoinositide 3-kinase pathways in pancreatic cancer - from molecular signalling to clinical trials
      Falasca, Marco; Selvaggi, F.; Buus, R.; Sulpizio, S.; Edling, C. (2011)
      Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its silent nature and tendency for late discovery but also because of its persistent resistance to chemotherapy. At present there are ...
    • 3-phosphoinositide-dependent protein kinase-1 as an emerging target in the management of breast cancer
      Fyffe, C.; Falasca, Marco (2013)
      It should be noted that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is a protein encoded by the PDPK1 gene, which plays a key role in the signaling pathways activated by several growth factors and hormones. PDK1 ...
    • Genomic analyses identify molecular subtypes of pancreatic cancer
      Bailey, P.; Chang, D.; Nones, K.; Johns, A.; Patch, A.; Gingras, M.; Miller, D.; Christ, A.; Bruxner, T.; Quinn, M.; Nourse, C.; Murtaugh, L.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourbakhsh, E.; Wani, S.; Fink, L.; Holmes, O.; Chin, V.; Anderson, M.; Kazakoff, S.; Leonard, C.; Newell, F.; Waddell, N.; Wood, S.; Xu, Q.; Wilson, P.; Cloonan, N.; Kassahn, K.; Taylor, D.; Quek, K.; Robertson, A.; Pantano, L.; Mincarelli, L.; Sanchez, L.; Evers, L.; Wu, J.; Pinese, M.; Cowley, M.; Jones, M.; Colvin, E.; Nagrial, A.; Humphrey, E.; Chantrill, L.; Mawson, A.; Humphris, J.; Chou, A.; Pajic, M.; Scarlett, C.; Pinho, A.; Giry-Laterriere, M.; Rooman, I.; Samra, J.; Kench, J.; Lovell, J.; Merrett, N.; Toon, C.; Epari, K.; Nguyen, N.; Barbour, A.; Zeps, Nikolajs; Moran-Jones, K.; Jamieson, N.; Graham, J.; Duthie, F.; Oien, K.; Hair, J.; Gruetzmann, R.; Maitra, A.; Iacobuzio-Donahue, C.; Wolfgang, C.; Morgan, R.; Lawlor, R.; Corbo, V.; Bassi, C.; Rusev, B.; Capelli, P.; Salvia, R.; Tortora, G.; Mukhopadhyay, D.; Petersen, G.; Munzy, D.; Fisher, W.; Karim, S.; Eshleman, J.; Hruban, R.; Pilarsky, C.; Morton, J.; Sansom, O.; Scarpa, A.; Musgrove, E.; Bailey, U.; Hofmann, O.; Sutherland, R.; Wheeler, D.; Gill, A.; Gibbs, R.; Pearson, J.; Waddell, N.; Biankin, A.; Grimmond, S. (2016)
      © 2016 Macmillan Publishers Limited. All rights reserved.Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.